石墨大小也是影響鑄鐵力學性能的一個因素。一般石墨球徑越細小,球鐵的強度越高,塑性、韌性越好。國家標準將石墨大小分為六級,見表6-13。評級時可以對照評級圖評定,亦可以測量石墨的大小進行評定。如果球墨鑄鐵還采用部分奧氏體化正火,則鐵素體呈分散分布的塊狀,如圖6-24a。這種鐵素體是在三相區(奧氏體、鐵素體、石墨三相區)內,呈塊狀的未溶鐵素體在正火時保留下來。如果采用完全奧氏體化爐冷至三相區保溫,進行二階段正火時,鐵素體呈分散分布的網狀,如圖6-24b。這種鐵素體是從奧氏體晶界上析出的。一般情況下,分散分布的鐵素體數量較少。國家標準按照塊狀(A)和網狀(B)兩個系列,將分散分布的鐵素體分為六級,這款鑄鐵件,以其獨特魅力贏得市場青睞。淄博插秧機鑄鐵件
磷共晶和滲碳體磷共晶的組織形態和磷共晶的類型,在本章第三節灰鑄鐵的基本組織中已經詳細說明,這里不再贅述。但是,磷共晶的數量評級,球墨鑄鐵的國家標準中將磷共晶分為五級,分別是磷0.5、磷1、磷1.5、磷2、磷3,不同于灰鑄鐵的標準分為六級。滲碳體的數量評級,也不同與灰鑄鐵將碳化物分為六級,球墨鑄鐵的國家標準中將滲碳體分為五級,分別是滲1、滲2、滲3、滲5、滲10。滲碳體是碳化物最常見的一種形式,其分布形態可參考灰鑄鐵金相檢驗中的內容。【想一想】在鑄態下,對球墨鑄鐵進行金相檢驗時,評定了珠光體數量后,還要不要評定鐵素體數量?安徽鑄鐵件生產廠家定制化鑄鐵件,滿足復雜工程需求。
灰鑄鐵的組織鐵素體灰鑄鐵——石墨化過程充分進行;鐵素體珠光體灰鑄鐵——一、二階段石墨化過程充分進行,第三階段石墨化過程部分進行;珠光體灰鑄鐵——一、二階段石墨化過程充分進行,第三階段石墨化過程完全沒有進行;灰鑄鐵的性能灰鑄鐵的性能主要取決于基體的性能和石墨的數量、形狀、大小、分布狀況。其中以細晶粒的珠光體基體和細片狀石墨組成的灰鑄鐵的性能優,應用范圍廣。灰鑄鐵的抗拉強度和塑性高于具有相同基體的鋼,但石墨片對灰鑄鐵的抗壓強度影響不大,所以灰鑄鐵用作承受壓載荷的零件,如機座、軸承座等。灰鑄鐵具有良好的鑄造性能、切削加工性能,而且石墨的存在可以起到減磨、減震作用。變質處理(孕育處理)——孕育鑄鐵變質處理:澆注前向鐵液中加入變質劑,促進晶粒細化。常用變質劑為含硅75%的硅鐵,加入量一般為鐵液重量的0.4%左右。性能:孕育鑄鐵的強度有很大提高,并且塑性、韌性也有所提高。
影響質量因素鑄鐵件的設計工藝性。進行設計時,除了要根據工作條件和金屬材料性能來確定鑄鐵件幾何形狀、尺寸大小外,還必須從鑄造合金和鑄造工藝特性的角度來考慮設計的合理性,即明顯的尺寸效應和凝固、收縮、應力等問題,以避免或減少鑄鐵件的成分偏析、變形、開裂等缺陷的產生。合理的鑄造工藝。即根據鑄鐵件結構、重量和尺寸大小,鑄造合金特性和生產條件,選擇合適的分型面和造型、造芯方法,合理設置鑄造筋、冷鐵、冒口和澆注系統等。以保證獲得好的鑄鐵件。精心鑄造的鑄鐵件,結構穩固,承載能力強。
由于鑄鐵中的碳主要是以石墨(G)形式存在的,所以鑄鐵的組織是由金屬基體和石墨所組成的。鑄鐵的金屬基體有珠光體、鐵素體和珠光體加鐵素體三類,它們相當于鋼的組織。因此,鑄鐵的組織特點,可以看成是在鋼的基體上分布著不同形狀的石墨。2.鑄鐵的性能特點鑄鐵的抗拉強度、塑性和韌性要比碳鋼低。雖然鑄鐵的機械性能不如鋼,但由于石墨的存在,卻賦予鑄鐵許多為鋼所不及的性能。如良好的耐磨性、高消振性、低缺口敏感性以及優良的切削加工性能。此外,鑄鐵的碳含量高,其成分接近于共晶成分,因此鑄鐵的熔點低,約為1200℃左右,鐵水流動性好,由于石墨結晶時體積膨脹,所以傳送收縮率小,其鑄造性能優于鋼,因而通常采用鑄造方法制成鑄件使用,故稱之為鑄鐵。鑄鐵件表面經過防銹處理,延長使用壽命。淄博插秧機鑄鐵件
耐腐蝕的鑄鐵件,適用于惡劣環境作業。淄博插秧機鑄鐵件
消除鑄件白口的高溫石墨化退火鑄件冷卻時,表層及薄截面處,往往產生白口。白口組織硬而脆、加工性能差、易剝落。因此必須采用退火(或正火)的方法消除白口組織。退火工藝為:加熱到550~950℃保溫2~5h,隨后爐冷到500~550℃再出爐空冷。在高溫保溫期間,游離滲碳體和共晶滲二次滲碳體和共析滲碳體也分解,發生石墨化過程。由于滲碳體提高鑄件的機械性能。有時正火也是球鐵表面淬火在組織上的準備、正火分高溫正火和低溫正火。高溫正火溫度一般不超過950~980℃,低溫正火一般加熱到共折溫度區間820~860℃。正火之后一般還需進行回火處理,以消除正火時產生的內應力,以達到鑄件白口的高溫石漠化退火。淄博插秧機鑄鐵件