市場案例及分析(略)、結論及建議,通過以上分析內容,并結合我司市場調研的情況,對中機能源公司提供的冰晶式動態蓄冰系統進行總結如下,并提出初步建議,供業主參考:1、從系統原理上看,冰晶式動態蓄冰屬于技術上更為先進的系統。但目前國家沒有相關的技術規范。2、從初投資和機房面積上看,可同時為夏季供冷和冬季供暖,節省了熱源系統的初投資和機房面積,目蓄冰系統本身成本無增加。3、從運行費用上,無論蓄冰功能還是熱泵功能能效都較高,特別在冬季同時需要供冷的情況下,節能效果明顯。板式換熱器與蓄冰槽聯動控制,可實現5℃溫差供冷,滿足精密機房溫控±0.5℃要求。浙江乳業動態冰蓄冷設備
刮刀式換熱器的內表面(刮刀葉片接觸面)處理要求非常光滑,而且刮刀葉片與換熱壁面之間的接觸必須緊密。另一方面,由于由純水生成的冰晶顆粒較粗,而且容易聚集硬化,更容易導致堵塞,因此此種制冰方法中往往需要在水中添加一定濃度的冰點抑制劑,如乙二醇、NaCl等。由此又引入了對設備材料的防腐問題。換熱器內表面和整個刮刀組件都是長期浸泡在乙二醇(或NaCl等其他鹽類)水溶液中,并且處于高流速的不利腐蝕條件下,因此金屬材料必須具有特殊的耐腐蝕性能。刮刀葉片一般采用塑料材料,在與金屬換熱避免長期高速摩擦的情況下,必須具有高耐磨的性能。江西速凍庫動態冰蓄冷散熱區域供冷站結合冰蓄冷,輸送距離延長至3km,冷損率<5%。
該系統相對于靜態蓄冰的優勢,主機能效高。初始的冰點溫度約為-1℃,蒸發溫度約為-4.5℃,每個循環約形成2%的冰晶,每個循環后溶液會有增加,一般設計為50%的蓄冰量,蓄冰完成后,溶液濃度會增加到6%,這時對應的冰點是-2.5℃℃,蒸發溫度約為-5.5℃,主機能效有所下降,主機COP在4.5以上。而雙工況盤管蓄冰,乙二醇為-5.6℃,蒸發溫度為-7℃的,主機的COP在3.5以下,且同樣靜態冰制取過程中,由于隨著冰層厚度的增加,傳熱也逐漸有所減少,主機需要卸載,從而會延長制冰時間,增加能耗。注:對于系統,須考慮綜合能耗。(對于大于1200RT,同樣需要用雙工況冷水機組經制冰換熱器實現。)
動態冰蓄冷系統,冰片滑落式,原理:通過水泵將蓄冰槽的水自上向下噴灑在制冰機的板狀蒸發器表面上,使其凍結成冰。當冰層厚度達到5~9mm時,通過制冰機的四通閥換向,將高溫氣態制冷劑通入蒸發器放熱,使與蒸發器板面接觸的冰融化板冰靠自重滑落至蓄冰槽內,形式如下圖。該系統四通閥切換頻繁,熱氣脫冰效率低、噪音大,民用使用較少。冰晶式動態冰蓄冷的技術分析,以上對冰晶式動態冰蓄冷的原理做了簡單概述,針對本次業主方提供的中機能源的冰晶式蓄冰系統主要特點是集制冷水、制冰晶及熱泵三功能與一體,區別于常規的雙工況(制冷、制冰工況)機組。冰蓄冷與磁懸浮冷機結合,系統綜合能效比(IPLV)達8.5。
過冷水蓄冰,原理:通過把普通淡水冷卻到低于0℃的液態過冷狀態,再經超聲波促晶生成流態化冰漿的技術,乙二醇溶液是處于亞穩定狀態,溶液進出制冰換熱器時溫差很小,當達到一定的過冷時會自發出現成核現象。其主要是讓水在換熱器中降溫到0℃以下的狀態而不發生相變,在過冷卻解除器中消除過冷狀態,低于0℃的水通過相變成為0℃C的冰,也有歸納到冰晶式蓄冷方式的。系統原理圖如下:該系統冷卻速度要快,水流高,易堵塞板換等缺點,應用較少。冰晶粒徑控制50-100μm,防止管道堵塞,輸送阻力較傳統冰漿降低40%。江西速凍庫動態冰蓄冷散熱
實時融冰速率調控技術,供冷量調節精度達±3%。浙江乳業動態冰蓄冷設備
國內外技術研究現 ,流態化動態冰蓄冷技術從上世紀90年代末開始在日本展開研究。到目前為止,已經有包括高砂熱學、Sunwell(日本)等公司成功研發出新型的動態冰蓄冷技術。其中高砂熱學較早掌握過冷水式動態冰蓄冷的商業化實用技術,而Sunwell(日本)則較早掌握了刮刀擾動式動態冰蓄冷的商業化實用技術。目前兩種技術都已在日本大量應用。然而,在我國不但沒有動態冰蓄冷空調的應用實例,就連基礎研究也非常少見。清華同方在過冷水動態制冰方面做了一定程度的基礎性研究。浙江乳業動態冰蓄冷設備