循環水工廠化養殖模式展望,想要建立適用于我國現狀的水產養殖模式,需要進行充分的調研,根據我國居民對水產品的需求及現階段我國工廠化水產養殖水平,將現階段循環水養殖水處理技術與工程化生態凈化技術相結合,實現養殖過程中節水、零排放。同時采用科學先進的微生物凈化技術,前期減少高昂的設備費用支出,縮短回報周期,讓更多的養殖人員從目前的多浪費、多污染的流水養殖模式轉變為零污染、少浪費的全封閉式循環水養殖模式,這不僅降低了生產成本而且有利于水產養殖業的綠色可持續發展。發展休閑漁業,提高工廠化養殖的休閑價值。北京大棚內工廠化水產養殖流程
國內外循環水養殖技術得到進一步發展,工藝設備不斷優化,逐步采用了納米材料技術、生物膜快速培養技術、厭氧反硝化技術、自動投餌和自動化控制技術等現代化科學技術成果。我國漁業科技工作者堅持自主研發中國的特色的工廠化循環水養殖工藝模式。通過不斷對工藝設備更新換代和配套集成,進一步提高了自動化程度和集約化程度,強化了生物安保和動物福利,養殖水循環利用率達到95%以上,循環水養殖配合生態綜合尾水凈化技術,實現了無廢物生產和“零排放”。重慶大型工廠化水產養殖方案養殖業與農產品加工業結合,拓展產業鏈條。
日常管理:1. 日常巡視,定期檢查殘留餌料量并根據需要及時調整投喂量。蛻皮期減少投喂,蛻皮后適時補充鈣質防止軟殼。定期檢查循環水系統的情況保證正常運轉。2. 水質調控,每日投料前,觀察蝦的狀況并清理死蝦及蝦殼,排掉底部部分污水。后期隨著蝦苗的長大以及飼喂量的增加,水體的氨氮濃度必會上升,所以需要增加換水量,但不能超過原水體的10%以避免蝦苗應激。定期檢測水質指標并根據水質具體情況調整循環水系統水循環量,并定期觀察壓力表數值,對石英砂濾罐進行反沖洗以免結塊而影響水質。
我國工廠化循環水養殖起步于20世紀80年代中期。1986年前后,國內企業從德國、丹麥等國家引進一批循環水養殖系統,主要從事淡水羅非魚、鰻魚的工廠化養殖。然而,工廠化循環水養殖投入高,其經濟性受到了嚴重質疑,加上技術上的不成熟,工廠化循環水養殖的發展一度進入了低谷。1990年初,國內開始進行工廠化循環水養殖相關的科學與技術研究,從早期摸索,到工藝、技術、裝備的逐步研發與配套集成,較終實現產業化運行,這個過程花費了30年。建立養殖廢棄物資源化利用體系,促進循環經濟發展。
除了在凈化水質,解決水產養殖中的“三大公害”,工廠化循環水養殖系統還能實現:(1)工廠化循環水系統,實現了在可控環境下養殖,實現了對物種生長率和收獲周期的科學管理。(2)高集約化,所需水量較傳統方式減少90~99%,占用土地不到牌其1%,不僅實現水的重復利用,減少熱損耗和水消耗,還能降低環境污染,實現可持續發展的養殖方式。(3)突破養殖物種在空間和時間上的養殖限制,實現在有限的空間內進行高密度養殖,在單位面積和單位人工產量上做到所有模式的較優。(4)實現養殖地點貼近需求市場,減少運輸成本,延長貨架擺放時間。工廠化養殖有助于提高水產養殖的抗風險能力,降低自然災害的影響。黑龍江智能工廠化水產養殖基地
丹麥的鮭魚工廠化養殖,為我國提供了借鑒和學習的范例。北京大棚內工廠化水產養殖流程
此外,設施化水平的提升,固然可以給一眾智能設施提供用武之地,但同時也意味著投入大、運營難,非尋常普通農戶可以承受。一方面,如何降低技術和資金門檻,另一方面,如何解決后續運營,以及走向千家萬戶,這些都是必解課題。在平湖的布局中,加快形成新質生產力,以此為托底的是推動建設現代化產業體系。因此,與其說“魚菜共生”是一項新技術,其真正的內核是一整套完整且高效的產業鏈條,早已從簡單的“賣產品”,升級為“賣模式”,即完整解決方案。北京大棚內工廠化水產養殖流程