近年來,隨著電動汽車的興起,動力電池的安全運行問題逐漸引起人們的注意。電池組的功率越大,其在使用過程中產生的熱量也就越高,因此,為了延長電池的使用壽命,我們需要對它進行熱管理,確保電池在運行過程中的溫度穩定。導熱灌封膠作為一種高效的熱傳導材料,在動力電池的熱管理中起到了關鍵作用。隨著電池工作功率的提高,電池在使用過程中產生的熱量也會隨之增加,如果無法及時有效地散熱,就會導致電池的溫度過高、對電池的性能和壽命產生負面影響,甚至可能引發安全事故。導熱灌封膠的高導熱性能,可以讓電池內部產生的熱量迅速散發到電池外部,從而有效地控制電池溫度。導熱灌封膠在新能源汽車電子部件散熱中得到廣泛應用。導熱灌封膠供應
導熱灌封膠的使用工藝:1、混合前:首先把A組分和B組分在各自的容器內充分攪拌均勻。2、混合時:應遵守A組分:B組分 = 1:1的重量比,并攪拌均勻。3、排泡:膠料混合后應真空排泡1-3分鐘。4、灌封:混合好的膠料應盡快灌注到被灌產品中,以免后期膠料增稠而流動性不好5、固化:室溫加溫固化均可。溫度越高,固化速度越快。氣溫較低時,要適當延長固化時間。在冬 季需很長時間才能固化,建議采用加熱方式固化,80~100℃下固化15分鐘,室溫條件下一般需12小時左右固化。上海灰色導熱灌封膠灌封膠在固化后能抵抗機械沖擊。
導熱電子灌封膠的特性與優勢:1、突出的導熱性能,電子元器件在工作時往往會產生大量的熱量,這些熱量如果得不到及時散發,會導致設備溫度升高,影響其性能和使用壽命。導熱電子灌封膠通過其內含的高導熱填料,能夠快速將元件產生的熱量導出,從而保證設備在高負載下的穩定運行。導熱灌封膠相比于傳統的導熱材料,具有更好的覆蓋性和散熱效率,能夠將熱量均勻分散至整個封裝層。2、電氣絕緣性能,電子元器件通常工作在復雜的電氣環境中,導熱電子灌封膠能夠提供優異的電氣絕緣保護,防止元器件之間發生短路或電氣干擾。良好的電氣絕緣性能確保設備在高電壓或敏感電路中的安全運行,避免了電氣故障的風險。
此階段物料處于流態,則體積收縮表現為液面下降直至凝膠,可完全消除該階段體積收縮內應力。從凝膠預固化到后固化階段升溫應平緩,固化完畢灌封件應隨加熱設備同步緩慢降溫,多方面減少、調節制件內應力分布狀況,可避免制件表面產生縮孔、凹陷甚至開裂現象。對灌封料固化條件的制訂,還要參照灌封器件內元件的排布、飽滿程度及制件大小、形狀、單只灌封量等。對單只灌封量較大而封埋元件較少的,適當地降低凝膠預固化溫度并延長時間是完全必要的。導熱灌封膠可適應多種不同的電子應用場景,通用性強。
雙組份導熱灌封膠的定義與組成:雙組份導熱灌封膠,顧名思義,是一種具有導熱性能的密封膠,由兩個關鍵組分構成:基膠和固化劑。基膠是導熱性能的主要,它能夠迅速將熱量傳導至連接表面。而固化劑則與基膠發生化學反應,使原本液態的膠體逐漸固化,形成堅固的密封層。這種材料在未固化前具有流動性,能夠滲透到每個縫隙中,提供全方面的灌封保護。雙組份導熱灌封膠的工作原理及應用:使用雙組份導熱灌封膠時,需將基膠與固化劑按一定比例混合均勻,然后涂抹在需要導熱灌封的部位。隨著固化反應的進行,膠體逐漸固化,較終形成具有彈性的膠層。這一膠層不僅具有隔熱、防塵、防腐蝕等功效,還能在高低溫環境下保持穩定的性能。因此,雙組份導熱灌封膠在電子設備、LED燈、電源模塊等需要散熱和密封的場景中得到了普遍應用。在航空航天領域,此膠確保關鍵部件可靠運行。導熱灌封膠供應
導熱灌封膠的低粘度特性便于其在復雜結構中均勻分布。導熱灌封膠供應
較常見的導熱灌封硅膠是雙組份(A、B組份)構成的,其中包括加成型或縮合型兩類硅橡膠,加成型的可以深層灌封并且固化過程中沒有低分子物質的產生,收縮率極低,對元件或灌封腔體壁的附著良好結合。縮合型的收縮率較高對腔體元器件的附著力較低。單組分導熱灌封硅橡膠也包括縮合型的和加成型的兩種,縮合型的一般對基材的附著力很好但只適合淺層灌封,單組分導熱硅橡膠一般需要低溫(冰箱保存),灌封以后需要加溫固化。導熱灌封硅橡膠依據添加不同的導熱物可以得到不同的導熱系數,普通的可以達到0.6-2.0,高導熱率的可以達到4.0以上。一般生產廠家都可以根據需要專門調配。導熱灌封膠供應