生成取值表。3把取值表與選擇的正交表進行映射控件數Ln(取值數)3個控件5個取值5的3次冪混合正交表當控件的取值數目水平不一致時候,使用allp**rs工具生成1等價類劃分法劃分值2邊界值分析法邊界值3錯誤推斷法經驗4因果圖分析法關系5判定表法條件和結果6流程圖法流程路徑梳理7場景法主要功能和業務的事件8正交表先關注主要功能和業務流程,業務邏輯是否正確實現,考慮場景法需要輸入數據的地方,考慮等價類劃分法+邊界值分析法,發現程序錯誤的能力**強存在輸入條件的組合情況,考慮因果圖判定表法多種參數配置組合情況,正交表排列法采用錯誤推斷法再追加測試用例。需求分析場景法分析主要功能輸入的等價類邊...
收藏查看我的收藏0有用+1已投票0軟件測試方法編輯鎖定本詞條由“科普**”科學百科詞條編寫與應用工作項目審核。軟件測試是使用人工或自動的手段來運行或測定某個軟件系統的過程,其目的在于檢驗它是否滿足規定的需求或弄清預期結果與實際結果之間的差別。[1]從是否關心軟件內部結構和具體實現的角度劃分,測試方法主要有白盒測試和黑盒測試。白盒測試方法主要有代碼檢査法、靜態結構分析法、靜態質量度量法、邏輯覆蓋法、基夲路徑測試法、域測試、符號測試、路徑覆蓋和程序變異。黑盒測試方法主要包括等價類劃分法、邊界值分析法、錯誤推測法、因果圖法、判定表驅動法、正交試驗設計法、功能圖法、場景法等。[1]從是否執行程...
每一種信息的來源或者形式,都可以稱為一種模態。例如,人有觸覺,聽覺,視覺,嗅覺。多模態機器學習旨在通過機器學習的方法實現處理和理解多源模態信息的能力。多模態學習從1970年代起步,經歷了幾個發展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創建復雜的深度多模態模型。目前,多模態數據融合主要有三種融合方式:前端融合(early-fusion)即數據水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(...
降低成本對每個階段都進行測試,包括文檔,便于控制項目過程缺點依賴文檔,沒有文檔的項目無法使用,復雜度很高,實踐需要很強的管理H模型把測試活動完全**出來,將測試準備和測試執行體現出來測試準備-測試執行就緒點其他流程----------設計等v模型適用于中小企業需求在開始必須明確,不適用變更需求w模型適用于中大企業包括文檔也需要測試(需求分析文檔概要設計文檔詳細設計文檔代碼文檔)測試和開發同步進行H模型對公司參與人員技能和溝通要求高測試階段單元測試-集成測試-系統測試-驗證測試是否覆蓋代碼白盒測試-黑盒測試-灰盒測試是否運行靜態測試-動態測試測試手段人工測試-自動化測試其他測試回歸測試-...
為了有效保證這一階段測試的客觀性,必須由**的測試小組來進行相關的系統測試。另外,系統測試過程較為復雜,由于在系統測試階段不斷變更需求造成功能的刪除或增加,從而使程序不斷出現相應的更改,而程序在更改后可能會出現新的問題,或者原本沒有問題的功能由于更改導致出現問題。所以,測試人員必須進行回歸測試。[2]軟件測試方法驗收測試驗收測試是**后一個階段的測試操作,在軟件產品投入正式運行前的所要進行的測試工作。和系統測試相比而言,驗收測試與之的區別就只是測試人員不同,驗收測試則是由用戶來執行這一操作的。驗收測試的主要目標是為向用戶展示所開發出來的軟件符合預定的要求和有關標準,并驗證軟件實際工作的...
不*可以用于回歸測試,也可以為以后的測試提供參考。[4](8)錯誤不可避免原則。在測試時不能首先假設程序中沒有錯誤。[4]軟件測試方法分類編輯軟件測試方法的分類有很多種,以測試過程中程序執行狀態為依據可分為靜態測試(StaticTesting,ST)和動態測試(DynamicTesting,DT);以具體實現算法細節和系統內部結構的相關情況為根據可分黑盒測試、白盒測試和灰盒測試三類;從程序執行的方式來分類,可分為人工測試(ManualTesting,MT)和自動化測試(AutomaticTesting,AT)。[5]軟件測試方法靜態測試和動態測試(1)靜態測試。靜態測試的含義是被測程序...
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構圖。圖5是前端融合模型的準確率變化曲線圖。圖6是前端融合模型的對數損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構圖。圖11是后端融合模型的準確率變化曲線圖。圖12是后端融合模型的對數損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構圖。圖17是中間融合模型的準確率變化曲線圖。圖...
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為。有效解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時偽造良性軟件的多個抽象層次的特征以逃避檢測,本發明實施例同時融合軟件的二進制可執行文件的多個抽象層次的特征,可準確檢測出偽造良性軟件特征的惡意軟件,解決...
先將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖分別輸入至一個深度神經網絡中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個深度神經網絡的輸入進行模型訓練,得到多模態深度集成模型。進一步的,所述多模態深度集成模型的隱藏層的***函數采用relu,輸出層的***函數采用sigmoid,中間使用dropout層進行正則化,優化器采用adagrad。進一步的,所述訓練得到的多模態深度集成模型中,用于抽取dll和api信息特征視圖的深度神經網絡包含3個隱含層,且3個隱含層中間間隔設置有dropout層;用于抽取格式信息特征視圖的深度神經網絡...
生成取值表。3把取值表與選擇的正交表進行映射控件數Ln(取值數)3個控件5個取值5的3次冪混合正交表當控件的取值數目水平不一致時候,使用allp**rs工具生成1等價類劃分法劃分值2邊界值分析法邊界值3錯誤推斷法經驗4因果圖分析法關系5判定表法條件和結果6流程圖法流程路徑梳理7場景法主要功能和業務的事件8正交表先關注主要功能和業務流程,業務邏輯是否正確實現,考慮場景法需要輸入數據的地方,考慮等價類劃分法+邊界值分析法,發現程序錯誤的能力**強存在輸入條件的組合情況,考慮因果圖判定表法多種參數配置組合情況,正交表排列法采用錯誤推斷法再追加測試用例。需求分析場景法分析主要功能輸入的等價類邊...
之所以被稱為黑盒測試是因為可以將被測程序看成是一個無法打開的黑盒,而工作人員在不軟件測試方法考慮任何程序內部結構和特性的條件下,根據需求規格說明書設計測試實例,并檢查程序的功能是否能夠按照規范說明準確無誤的運行。其主要是對軟件界面和軟件功能進行測試。對于黑盒測試行為必須加以量化才能夠有效的保證軟件的質量。[5](2)白盒測試。其與黑盒測試不同,它主要是借助程序內部的邏輯和相關信息,通過檢測內部動作是否按照設計規格說明書的設定進行,檢查每一條通路能否正常工作。白盒測試是從程序結構方面出發對測試用例進行設計。其主要用于檢查各個邏輯結構是否合理,對應的模塊**路徑是否正常以及內部結構是否有效...
測試人員素質要求1、責任心2、學習能力3、懷疑精神4、溝通能力5、專注力6、洞察力7、團隊精神8、注重積累軟件測試技術測試目的編輯軟件測試的目的是為了保證軟件產品的**終質量,在軟件開發的過程中,對軟件產品進行質量控制。一般來說軟件測試應由**的產品評測中心負責,嚴格按照軟件測試流程,制定測試計劃、測試方案、測試規范,實施測試,對測試記錄進行分析,并根據回歸測試情況撰寫測試報告。測試是為了證明程序有錯,而不能保證程序沒有錯誤。軟件測試技術常見測試編輯回歸測試功能測試壓力測試負載測試性能測試易用性測試安裝與反安裝測試**測試安全性測試兼容性測試內存泄漏測試比較測試Alpha測試Beta測...
且4個隱含層中間間隔設置有dropout層。用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,其***個隱含層的神經元個數是64,第二個神經元的隱含層個數是10,且2個隱含層中間設置有dropout層。且所有dropout層的dropout率等于。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,中間融合模型的準確率變化曲線如圖17所示,模型的對數損失變化曲線如圖18所示。從圖17和圖18可以看出,當epoch值從0增加到20過程中,模型的訓練準確率和驗證準確率快速提高,模型的訓練對數損失和驗證對數損失快速減少;當...
對一些質量要求和可靠性要求較高的模塊,一般要滿足所需條件的組合覆蓋或者路徑覆蓋標準。[2]軟件測試方法集成測試集成測試是軟件測試的第二階段,在這個階段,通常要對已經嚴格按照程序設計要求和標準組裝起來的模塊同時進行測試,明確該程序結構組裝的正確性,發現和接口有關的問題,比如模塊接口的數據是否會在穿越接口時發生丟失;各個模塊之間因某種疏忽而產生不利的影響;將模塊各個子功能組合起來后產生的功能要求達不到預期的功能要求;一些在誤差范圍內且可接受的誤差由于長時間的積累進而到達了不能接受的程度;數據庫因單個模塊發生錯誤造成自身出現錯誤等等。同時因集成測試是界于單元測試和系統測試之間的,所以,集成測...
**小化對數損失基本等價于**大化分類器的準確度,對于完美的分類器,對數損失值為0。對數損失函數的計算公式如下:其中,y為輸出變量即輸出的測試樣本的檢測結果,x為輸入變量即測試樣本,l為損失函數,n為測試樣本(待檢測軟件的二進制可執行文件)數目,yij是一個二值指標,表示與輸入的第i個測試樣本對應的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個測試樣本屬于類別j的概率,m為總類別數,本實施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評價,roc曲線的縱軸是檢測率(true****itiverate),橫軸是誤報率(...
先將當前軟件樣本件的二進制可執行文件轉換為十六進制字節碼序列,然后采用n-grams方法在十六進制字節碼序列中滑動,產生大量的連續部分重疊的短序列特征,提取得到當前軟件樣本的二進制可執行文件的字節碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統計所有類別已知的軟件樣本的pe可執行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當前軟件樣本的所有dll和api信息進...
首先和大家聊一下什么是cma第三方軟件檢測資質,什么是cnas第三方軟件檢測資質,這兩個第三方軟件測評檢測的資質很多人會分不清楚。那么首先我們來看一下,cma是屬于市場監督管理局的一個行政許可,在國內是具有法律效力的認可資質。Cnas屬于中國合格評定國家委員會頒發的一個資質,效力也是受到認可的,但是cnas同時也是在全球范圍內可以通用認可,所以更多的適用于有國際許可認證需求的客戶。那么,有的客戶會存在疑問,為什么有時候軟件項目要求同時出具cma和cnas雙資質認證呢,這如果是在軟件開發項目需求中明確要求雙資質,那么就需要在出具軟件測試報告的同時蓋這兩個資質章,但是如果項目并沒有明確要求...
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高...
對一些質量要求和可靠性要求較高的模塊,一般要滿足所需條件的組合覆蓋或者路徑覆蓋標準。[2]軟件測試方法集成測試集成測試是軟件測試的第二階段,在這個階段,通常要對已經嚴格按照程序設計要求和標準組裝起來的模塊同時進行測試,明確該程序結構組裝的正確性,發現和接口有關的問題,比如模塊接口的數據是否會在穿越接口時發生丟失;各個模塊之間因某種疏忽而產生不利的影響;將模塊各個子功能組合起來后產生的功能要求達不到預期的功能要求;一些在誤差范圍內且可接受的誤差由于長時間的積累進而到達了不能接受的程度;數據庫因單個模塊發生錯誤造成自身出現錯誤等等。同時因集成測試是界于單元測試和系統測試之間的,所以,集成測...
保留了較多信息,同時由于操作數比較隨機,某種程度上又沒有抓住主要矛盾,干擾了主要語義信息的提取。pe文件即可移植文件導入節中的動態鏈接庫(dll)和應用程序接口(api)信息能大致反映軟件的功能和性質,通過一個可執行程序引用的dll和api信息可以粗略的預測該程序的功能和行為。belaoued和mazouzi應用統計khi2檢驗分析了pe格式的惡意軟件和良性軟件的導入節中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統計上有明顯的區別。后續的研究人員提出了挖掘dll和api信息的惡意軟件檢測方法,該類方法提取的特征語義信息豐富,但*從二進制可執行文件的導入節提...
在介紹諸多知識點的過程當中結合直觀形象的圖表或實際案例進行深入淺出的分析,從而使讀者可以更好地理解秋掌握軟件測試理論知識,并迅速地運用到實際測試工作中去。本書適合作為各層次高等院校計算機及相關的教學用書,也可作為軟件測試人員的參考書。目錄前言第1章概述第2章軟件測試基礎第3章單元測試第4章集成測試第5章系統測試……軟件測試技術圖書2書名:軟件測試技術層次:高職高專配套:電子課件作者:徐芳出版社:機械工業出版社出版時間:2011-6-21ISBN:開本:16開定價:¥內容簡介本書根據軟件測試教學的需要,結合讀者對象未來的職業要求和定位,除了盡力***闡述軟件測試技術基本概念外,采取了計劃...
此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發明實施例的目的在于提供一種基于多模態深度學習的惡意軟件檢測方法,以解決現有采用二進制可執行文件的單一特征類...
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為。有效解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時偽造良性軟件的多個抽象層次的特征以逃避檢測,本發明實施例同時融合軟件的二進制可執行文件的多個抽象層次的特征,可準確檢測出偽造良性軟件特征的惡意軟件,解決...
程序利用windows提供的接口(windowsapi)實現程序的功能。通過一個可執行程序引用的動態鏈接庫(dll)和應用程序接口(api)可以粗略的預測該程序的功能和行為。統計所有樣本的導入節中引用的dll和api的頻率,留下引用頻率**高的60個dll和500個api。提取特征時,每個樣本的導入節里存在選擇出的dll或api,該特征以1表示,不存在則以0表示,提取的560個dll和api特征作為***個特征視圖。提取格式信息特征視圖pe是portableexecutable的縮寫,初衷是希望能開發一個在所有windows平臺上和所有cpu上都可執行的通用文件格式。pe格式文件是封裝...
第三方軟件檢測機構在開展第三方軟件測試的過程中,需要保持測試整體的嚴謹性,也需要對測試結果負責并確保公平公正性。所以,在測試過程中,軟件測試所使用的測試工具也是很重要的一方面。我們簡單介紹一下在軟件檢測過程中使用的那些軟件測試工具。眾所周知,軟件測試的參數項目包括功能性、性能、安全性等參數,而其中出具軟件測試報告主要的就是性能測試和安全測試所需要使用到的工具了。一、軟件測試性能測試工具這個參數的測試工具有loadrunner,jmeter兩大主要工具,國產化性能測試軟件目前市場并未有比較大的突破,其中loadrunner是商業軟件測試工具,jmeter為開源社區版本的性能測試工具。從第...
生成取值表。3把取值表與選擇的正交表進行映射控件數Ln(取值數)3個控件5個取值5的3次冪混合正交表當控件的取值數目水平不一致時候,使用allp**rs工具生成1等價類劃分法劃分值2邊界值分析法邊界值3錯誤推斷法經驗4因果圖分析法關系5判定表法條件和結果6流程圖法流程路徑梳理7場景法主要功能和業務的事件8正交表先關注主要功能和業務流程,業務邏輯是否正確實現,考慮場景法需要輸入數據的地方,考慮等價類劃分法+邊界值分析法,發現程序錯誤的能力**強存在輸入條件的組合情況,考慮因果圖判定表法多種參數配置組合情況,正交表排列法采用錯誤推斷法再追加測試用例。需求分析場景法分析主要功能輸入的等價類邊...
軟件測試技術測試分類編輯軟件測試的狹義論和廣義論——靜態和動態的測試軟件測試技術軟件測試的辨證論——正向思維和反向思維軟件測試的風險論——測試是評估軟件測試的經濟學觀點——為盈利而測試軟件測試的標準論——驗證和確認軟件測試技術測試工具編輯幾種常用的測試工具:1、軟件錯誤管理工具Bugzilla2、功能測試工具WinRunner3、負載測試工具LoadRunner4、測試管理工具TestDirector軟件測試技術同名圖書編輯軟件測試技術圖書1書名:軟件測試技術軟件測試技術作者:曲朝陽出版社:**水利水電出版社出版時間:2006ISBN:97開本:16定價:元內容簡介本書詳盡地闡述了軟件...
之所以被稱為黑盒測試是因為可以將被測程序看成是一個無法打開的黑盒,而工作人員在不軟件測試方法考慮任何程序內部結構和特性的條件下,根據需求規格說明書設計測試實例,并檢查程序的功能是否能夠按照規范說明準確無誤的運行。其主要是對軟件界面和軟件功能進行測試。對于黑盒測試行為必須加以量化才能夠有效的保證軟件的質量。[5](2)白盒測試。其與黑盒測試不同,它主要是借助程序內部的邏輯和相關信息,通過檢測內部動作是否按照設計規格說明書的設定進行,檢查每一條通路能否正常工作。白盒測試是從程序結構方面出發對測試用例進行設計。其主要用于檢查各個邏輯結構是否合理,對應的模塊**路徑是否正常以及內部結構是否有效...
并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入步驟s2訓練得到的多模態深度集成模型中,對測試樣本進行檢測并得出檢測結果。實驗結果與分析(1)樣本數據集選取實驗評估使用了不同時期的惡意軟件和良性軟件樣本,包含了7871個良性軟件樣本和8269個惡意軟件樣本,其中4103個惡意軟件樣本是2011年以前發現的,4166個惡意軟件樣本是近年來新發現的;3918個良性軟件樣本是從全新安裝的windowsxpsp3系統中收集的,3953個良性軟件樣本是從全新安裝的32位windows7系統中收集的。所有的惡意軟件樣本都是從vxheavens網站中收集...
這種傳統方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經過簡單加殼或混淆后又不能檢測,且使用多態變形技術的惡意軟件在傳播過程中不斷隨機的改變著二進制文件內容,沒有固定的特征,使用該方法也不能檢測。新出現的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯網前,都使用主流的反**軟件測試,確保主流的反**軟件無法識別這些惡意軟件,使得當前的反**軟件通常對它們無能為力,只有在惡意軟件大規模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件。基于數據挖掘和機器學習的惡意軟件檢測方法將可執行文件表示成不同抽象層次的特征,使用這些特征來訓練分類模型,可...