信號包絡分析
為提高在線監測的準確度,GZAFV-01系統的IED/主機通常采用高采樣率獲取聲紋振動及驅動電機電流的信號,然而大量的數據不利于快速、準確存儲與分析。因而采用包絡分析,簡化并反映原始信號特征,便于后續分析與處理。傳統希爾伯特變換進行包絡分析時存在提取深度不足、存在幅值偏差等問題,因此采用小波變換和希爾伯特變換結合的信號包絡分析。聲紋振動和電流的信號包絡分析
信號包絡重合度比對分析
信號包絡分析后可快速實現歷史信號重合度比對分析,更直觀地判斷OLTC運行狀態。為量化信號重合度比對,GZAFV-01系統引入互相關系數的計算。當實時采集的與正常狀態的信號包絡互相關系數:◆接近1時,OLTC接近正常運行狀態。◆接近0時,OLTC可能存在故障。 GZAFV-01型聲紋振動監測系統的相關特點、參數和配置。特高壓振動聲紋監測系統
利用 AFV 信號分析法對 OLTC 進行狀態監測,需要建立完善的信號分析體系。OLTC 在運行過程中產生的振動信號是復雜的,受到多種因素的影響。我們需要通過對大量正常和故障狀態下的 OLTC 振動信號進行采集和分析,建立起故障類型與信號特征之間的數據庫。例如,針對觸頭接觸不良、觸頭磨損、彈簧彈性下降等不同故障類型,分別確定其對應的振動信號特征模式。在實際監測中,將采集到的 OLTC 振動信號與數據庫中的模式進行比對,通過模式識別技術準確判斷 OLTC 的故障類型和狀態,實現對 OLTC 的智能化監測和管理。杭州GZAF-1000T系列變壓器/電抗器振動歡迎來電GZAFV-06T型便攜式變壓器聲紋振動 監測與診斷系統技術方案。
在 OLTC 的狀態監測領域,AFV 信號分析法具有獨特的優勢。OLTC 切換時,內部機構部件的運動撞擊和摩擦產生的脈沖沖擊力,通過變壓器油和靜觸頭傳遞到變壓器箱壁,形成具有特定頻率和幅值特征的振動信號。這些信號如同設備運行狀態的 “密碼”,通過 AFV 傳感器采集并運用專業的信號處理算法進行分析,我們可以解讀出 OLTC 的工作模式和狀態數據。例如,當 OLTC 出現電弧故障時,其振動信號會呈現出高頻、高幅值的特征,與正常運行狀態下的信號有明顯區別。利用 AFV 信號分析法,我們能夠快速準確地判斷出 OLTC 的故障類型,為設備的維護和管理提供科學依據。
能量分布曲線
基于小波變換的聲紋振動信號多分辨率分析結果如下圖3.8所示。原始信號經8層分解后產生第8層的近似分量和第1層至第8層的詳細分量,計算各層詳細分量信號能量,可獲得信號能量分布曲線。比對正常狀態與異常狀態能量分布曲線,可判斷OLTC運行狀態,并提取互相關系數、最大值、平均值、峰度、偏度作為狀態診斷特征參量。下圖3.7為正常與異常狀態的聲紋振動信號能量分布曲線比對。
時頻能量分布矩陣(ATF圖譜)
獲取聲紋振動信號的時頻能量分布矩陣,同時反映原始信號時域、頻域特性及能量分布。將信號時頻分布矩陣分為6個區間,計算各區間平均值作為特征參量,用于OLTC正常狀態與異常狀態比對。下圖3.9為正常狀態下聲紋振動信號時頻能量矩陣。 杭州國洲電力科技有限公司振動聲學指紋在線監測技術的成功案例分享。
4.2.2具備實物ID管理功能,提供OLTC、繞組及鐵芯運行狀態信息鏈接入口,可掃碼讀取設備在線監測歷史數據及趨勢。通過掃碼或RFID識別設備,讀取設備ID信息,通過站內網絡(4G/5G/WIFI)傳輸給云端服務器,向服務器請求該設備的詳細信息,以及詳細的運行狀態,測試信息等。4.2.3根據各時頻信號互相關系數、能量分布曲線特征參量(互相關系數、最大值、平均值、峰度、偏度)、ATF圖譜特征參量(六等分區間均值)、總諧波畸變率、基頻信號能量比等狀態量,采用深度學習算法,自動判斷變壓器運行狀態及機械故障類型。
4.2.4結合變壓器的帶電監測、智能巡檢以及其他在線監測狀態量,進行數據的多參量融合分析,形成基于多源數據的故障預警機制,多參量融合分析不僅提高了識別故障的準確性,而且還能**降低因單個參量判別故障帶來的誤報。例如,對于變壓器疑似問題地診斷可結合負荷、損耗、繞組機械振動信號、油溫、以及歷史電流電壓情況分析,在監測到變壓器地聲紋振動頻譜時,GZAFV-01系統的操控及監測數據分析系統可以自動去查詢變壓器地歷史電流和電壓信號,如果發現在某段時期確實有大電流沖擊,可給出預警:變壓器可能存在繞組變形地異常。 杭州國洲電力科技有限公司振動聲學指紋在線監測技術的行業合作案例。杭州GZAF-1000S系列高壓開關振動備件
杭州國洲電力科技有限公司振動聲學指紋在線監測服務的全流程支持。特高壓振動聲紋監測系統
OLTC 的安全穩定運行對電力系統至關重要,AFV 信號分析法是保障其運行的有力手段。OLTC 切換時,內部機械部件的運動撞擊和摩擦產生的脈沖沖擊力,通過變壓器油傳遞到變壓器箱壁,形成振動信號。這些信號中蘊含著 OLTC 的機械狀態信息,如觸頭的接觸情況、彈簧的彈性等。通過 AFV 傳感器對這些信號的監測和分析,我們可以實時了解 OLTC 的運行狀態。當 OLTC 出現故障時,如觸頭接觸不良或彈簧彈性下降,振動信號會呈現出特定的變化模式。利用這些模式,我們可以快速準確地診斷出故障類型,采取相應的維修措施,確保 OLTC 的正常運行,保障電力系統的安全穩定。特高壓振動聲紋監測系統