楔形棱鏡旋轉雷達,收發模塊的PLD(PulsedLaserDiode)發射出激光,通過反射鏡和凸透鏡變成平行光,掃描模塊的兩個旋轉的棱鏡改變光路,使激光從某個角度發射出去。激光打到物體上,反射后從原光路回來,被APD接收。與MEMSLidar相比,它可以做到很大的通光孔徑,距離也會測得較遠。與機械旋轉Lidar相比,它極大地減少了激光發射和接收的線數,降低了對焦與標定的復雜度,大幅提升生產效率,降低成本。優點:非重復掃描,解決了機械式激光雷達的線式掃描導致漏檢物體的問題;可實現隨著掃描時間增加,達到近100%的視場覆蓋率;沒有電子元器件的旋轉磨損,可靠性更高,符合車規。缺點:單個雷達的FOV較小,視場覆蓋率取決于積分時間;獨特的掃描方式使其點云的分布不同于傳統機械旋轉Lidar,需要算法適配。激光雷達的功耗低,延長了設備的使用壽命。浙江Hap激光雷達渠道
測遠能力: 一般指激光雷達對于10%低反射率目標物的較遠探測距離。較近測量距離:激光雷達能夠輸出可靠探測數據的較近距離。測距盲區:從激光雷達外罩到較近測量距離之間的范圍,這段距離內激光雷達無法獲取有效的測量信號,無法對目標物信息進行反饋。角度盲區:激光雷達視場角范圍沒有覆蓋的區域,系統無法獲取這些區域內的目標物信息。角度分辨率:激光雷達相鄰兩個探測點之間的角度間隔,分為水平角度分辨率與垂直角度分辨率。相鄰探測點之間角度間隔越小,對目標物的細節分辨能力越強。河南覽沃激光雷達氣象監測時激光雷達探測大氣成分,輔助氣象預報工作。
我們可以根據 LiDAR 能描繪出稀疏的三維世界的特點,而掃描得到的障礙物點云通常又比背景更密集,通過分類聚類的方法可以利用其進行感知障礙物。而隨著深度學習帶來的檢測和分割技術上的突破,LiDAR 已經能做到高效的檢測行人和車輛,輸出檢測框,即 3D bounding box,或者對點云中的每一個點輸出 label,更有甚者在嘗試使用 LiDAR 檢測地面上的車道線。在三維目標識別的對象方面,較初研究主要針對立方體、柱體、錐體以及二次曲面等簡單形體構成的三維目標。
目前,LiDAR已普遍應用于各個領域。在大氣科學中,LiDAR被用于空氣質量監測和污染物檢測;在天文學領域,LiDAR技術可用于觀察行星表面地貌特征以及太陽系內其他天體的形態結構;在工程建設方面,利用LiDAR技術可以快速獲取地形數據、制作數字高程模型(DEM)以及生成精確的三維地圖;而在汽車領域中,人們普遍認為LiDAR是一項關鍵的光學距離感知技術,在自動駕駛領域得到了普遍應用。幾乎所有投入自動駕駛研發的廠商都將LiDAR視為一項關鍵技術,并且已經有一些低成本、小體積的LiDAR系統被應用于高級駕駛輔助系統(Advanced Driver Assistance Systems, ADAS)。覽沃 Mid - 360 混合固態技術優越,實現 360° 全向超大視場角感知。
國內市場,中國是激光雷達未來的較大市場之一。根據麥肯錫的預測,中國將是全球較大的自動駕駛市場,也是高級輔助駕駛領域全球較大的新車銷售市場。由于人口老齡化和產業升級的影響,需要在減少人力支出的情況下增加生產效率,通過無人駕駛、高級輔助駕駛、服務型機器人通過機器自動化工作來減少人力支出。在2022年中國激光雷達市場規模約為26.4億元。根據預測,2023年中國激光雷達市場規模將達75.9億元,2024年將達到139.6億元。2022年全球靠前的激光雷達公司中,2家車載激光雷達公司都來自中國,分別是禾賽科技和速騰聚創。在政策端,國家近年來不斷推出新的政策以支持激光雷達企業的成長與發展。激光雷達在森林監測中用于評估森林資源和健康狀況。甘肅激光雷達行價
航空測繪依靠激光雷達獲取數據,服務城市規劃建設。浙江Hap激光雷達渠道
分類,激光雷達按結構不同大致可以分為:機械旋轉激光雷達、混合半固態激光雷達和全固態激光雷達(Flash快閃和OPA相控陣,統稱為非掃描式)。(一)機械旋轉激光雷達,機械式激光雷達體積大、成本較高、裝配難。它通過旋轉實現橫向360度的覆蓋面,通過內部鏡片實現垂直角度的覆蓋面,同比有著更耐用穩定的特點,所以我們看到的自動駕駛路試車大多采用這種類型,雷達在車頂不停的在旋轉完成橫向掃描,靠增加激光束,實現縱向寬泛的掃描。(二)混合半固態激光雷達。按照掃描方式分為:轉鏡、硅基MEMS、振鏡+轉鏡、旋轉透射棱鏡。浙江Hap激光雷達渠道