工作原理,相控陣雷達發射的是電磁波,OPA(Optical Phase Array的簡稱,即光學相控陣)激光雷達發射的是光,而光和電磁波一樣也表現出波的特性,所以原理上是一樣的。波與波之間會產生干涉現象,通過控制相控陣雷達平面陣列各個陣元的電流相位,利用相位差可以讓不同的位置的波源會產生干涉(類似的是兩圈水波相互疊加后,有的方向會相互抵消,有的會相互增強),從而指向特定的方向,往復控制便得以實現掃描效果。利用光的相干性質,通過人為控制相位差實現不同方向的光發射效果;我們知道光和電磁波一樣也表現出波的特性,因此同樣可以利用相位差控制干涉讓激光“轉向”特定的角度,往復控制實現掃描效果。工業生產里激光雷達檢測產品缺陷,有效保障產品質量。湖南激光雷達正規
多傳感器融合,在環境監測傳感器中,超聲波雷達主要用于倒車雷達以及自動泊車中的近距離障礙監測,攝像頭、毫米波雷達和激光雷達則普遍應用于各項 ADAS 功能中。四類傳感器的探測距離、分辨率、角分辨率等探測參數各異,對應于物體探測能力、識別分類能力、三維建模、抗惡劣天氣等特性優劣勢分明。各種傳感器能形成良好的優勢互補,融合傳感器的方案已成為主流的選擇。激光雷達LiDAR的全稱為Light Detection and Ranging激光探測和測距,又稱光學雷達。上海軌道交通激光雷達憑借超廣 FOV,覽沃 Mid - 360 讓移動機器人對復雜 3D 環境了如指掌。
相比于半固態式和固態式激光雷達,機械旋轉式激光雷達的優勢在于可以對周圍環境進行360°的水平視場掃描,而半固態式和固態式激光雷達往往較高只能做到120°的水平視場掃描,且在視場范圍內測距能力的均勻性差于機械旋轉式激光雷達。由于無人駕駛汽車運行環境復雜,需要對周圍360°的環境具有同等的感知能力,而機械旋轉式激光雷達兼具360°水平視場角和測距能力遠的優勢,目前主流無人駕駛項目紛紛采用了機械旋轉式激光雷達作為主要的感知傳感器。
也有使用相干法,即為調頻連續波(FMCW)激光雷達發射一束連續的光束,頻率隨時間穩定地發生變化。由于源光束的頻率在不斷變化,光束傳輸距離的差異會導致頻率的差異,將回波信號與本振信號混頻并經低通濾波后,得到的差頻信號是光束往返時間的函數。調頻連續波激光雷達不會受到其他激光雷達或太陽光的干擾且無測距盲區;還可以利用多普勒頻移測量物體的速度和距離。調頻延續波 LiDAR 概念并不新穎,但是面對的技術挑戰不少,例如發射激光的線寬限制、線性調頻脈沖的頻率范圍、線性脈沖頻率變化的線性度,以及單個線性調頻脈沖的可復制性等。激光雷達在機器人避障中發揮了關鍵作用。
新思科技提供的多個光學和光子學工具,可用于支持LiDAR的系統級和元件級設計:CODE V 光學設計軟件,用于在LiDAR系統中設計光學接收系統。光學設計應用:在 LiDAR系統中優化接收器上的圈入能量。使用CODE V優化LiDAR中的接收光學系統,LightTools 照明設計軟件能模擬雨滴、霧霾等大氣環境對光信號探測造成的影響,并能獲取返回光程數據以解決飛行時間計算問題。用于 LiDAR 和激光光源的功能。使用LightTools模擬LiDAR光學系統,Photonic Solutions光子方案模擬工具,能夠對LiDAR系統中的多個組件進行優化設計。激光雷達的智能化校準功能減少了人工干預的需要。江蘇多線激光雷達價格
激光雷達在無人倉儲系統中實現貨物的精確定位。湖南激光雷達正規
LiDAR 數據通常在空中收集,如NOAA在加州大蘇爾Bixby大橋上空的調查飛機(右圖)。這里的LiDAR數據顯示了Bixby大橋的俯視圖(左上)和側視圖(左下)。NOAA的科學家使用基于LiDAR的裝置檢查自然和人造環境。LiDAR數據支持洪水和風暴潮建模、水動力建模、海岸線測繪、應急響應、水文測量以及海岸脆弱性分析等活動。此外,地形LiDAR使用近紅外激光繪制地形和建筑物地圖,而測深LiDAR使用透水綠光繪制海底和河床地圖。在農業中,LiDAR可用于繪制拓撲圖和作物生長圖,從而提供有關肥料需求和灌溉需求的信息。湖南激光雷達正規