LiDAR的數據,三維點,對于旋轉式激光雷達來說,得到的三維點便是一個很好的極坐標系下的多個點的觀測,包含激光發射器的垂直俯仰角,發射器的水平旋轉角度,根據激光回波時間計算得到的距離。但 LiDAR 通常會輸出笛卡爾坐標系下的觀測值,頭一是因為 LiDAR 在極坐標系下測量效率高,也只是對于旋轉式 LiDAR,目前陣列式 LiDAR 也有很多。第二笛卡爾坐標系更加直觀,投影和旋轉平移更加簡潔,求解法向量,曲率,頂點等特征計算量小,點云的索引及搜索都更加高效。對于 MEMS 式激光雷達,由于一次采樣周期為一個偏振鏡旋轉周期,10hz 下采樣周期為 0.1 秒,但由于載體本身在進行高速移動時,我們需要對得到的數據進行消除運動畸變,來補償采樣周期內的運動。激光雷達的分辨率高,能夠捕捉到細微的目標特征。安徽三維激光雷達廠商
激光雷達結構,激光雷達的關鍵部件按照信號處理的信號鏈包括控制硬件DSP(數字信號處理器)、激光驅動、激光發射發光二極管、發射光學鏡頭、接收光學鏡頭、APD(雪崩光學二極管)、TIA(可變跨導放大器)和探測器,如下圖所示。其中除了發射和接收光學鏡頭外,都是電子部件。隨著半導體技術的快速演進,性能逐步提升的同時成本迅速降低。但是光學組件和旋轉機械則占具了激光雷達的大部分成本。激光雷達的種類,把激光雷達按照掃描方式來分類,目前有機械式激光雷達、半固態激光雷達和固態激光雷達三大類。其中機械式激光雷達較為常用,固態激光雷達為未來業界大力發展方向,半固態激光雷達是機械式和純固態式的折中方案,屬于目前階段量產裝車的主力軍。上海傲覽Avia激光雷達價位激光雷達在智能機器人導航中發揮著至關重要的作用。
優劣勢分析,優勢:OPA激光雷達發射機采用純固態器件,沒有任何需要活動的機械結構,因此在耐久度上表現更出眾;雖然省去機械掃描結構,但卻能做到類似機械式的全景掃描,同時在體積上可以做得更小,量產后的成本有望較大程度上降低。劣勢:OPA激光雷達對激光調試、信號處理的運算力要求很大,同時,它還要求陣列單元尺寸必須不大于半個波長,因此每個器件尺寸只500nm左右,對材料和工藝的要求都極為苛刻,由于技術難度高,上游產業鏈不成熟,導致 OPA 方案短期內難以車規級量產,目前也很少有專注開發OPA激光雷達的Tier1供應商。
半固態—MEMS式激光雷達,MEMS全稱Micro-Electro-Mechanical System(微機電系統),是將原本激光雷達的機械結構通過微電子技術集成到硅基芯片上。本質上而言MEMS激光雷達并沒有做到完全取消機械結構,所以它是一種半固態激光雷達。工作原理,MEMS在硅基芯片上集成了體積十分精巧的微振鏡,其主要結構是尺寸很小的懸臂梁——通過控制微小的鏡面平動和扭轉往復運動,將激光管反射到不同的角度完成掃描,而激光發生器本身固定不動。其次,MEMS的振動角度有限導致視場角比較小(小于120度),同時受限于MEMS微振鏡的鏡面尺寸,傳統MEMS技術的有效探測距離只有50米,FOV角度只能達到30度,多用于近距離補盲或者前向探測。激光雷達的掃描模式多樣,適應不同場景的需求。
LiDAR還能夠用于確定測量目標的速度。這可以通過多普勒方法或快速連續測距來實現。例如,可以使用LiDAR系統測量風速和車速。另外,LiDAR系統能夠用于建立動態場景的三維模型,這是自動駕駛中會遇到的情形。這可以通過多種方式來實現,通常使用的是掃描的方式。LiDAR 技術中的挑戰,在可實現的LiDAR系統中存在一些眾所周知的挑戰。這些挑戰根據LiDAR系統的類型有所不同。以下是一些示例:隔離和抑制發射光束的信號——探測光束的輻射亮度通常遠大于回波光束。必須注意確保探測光束不會被系統自身反射或散射回接收器,否則探測器將會因為飽和而無法探測外部目標。激光雷達在考古發掘中用于繪制遺址的三維模型。IGV激光雷達廠家
工業生產里激光雷達檢測產品缺陷,有效保障產品質量。安徽三維激光雷達廠商
激光光源,由于激光器發射的光線需要投射至整個FOV平面區域內,除了面光源可以直接發射整面光線外,點光源則需要做二維掃描覆蓋整個FOV區域,線光源需要做一維掃描覆蓋整個FOV區域。其中點光源根據光源發射的形式又可以分為EEL(Edge-Emitting Laser邊發射激光器)和VCSEL(Vertical-Cavity Surface-Emitting Laser垂直腔面發射激光器)兩種,二者區別在于EEL激光平行于襯底表面發出(如圖1),VCSEL激光垂直于襯底表面發出(如圖2)。其中VCSEL式易于進行芯片式陣列布置,通常使用此類光源進行陣列式布置形成線光源(一維陣列)或面光源(二維陣列),VCSEL光源剖面圖與二維陣列光源芯片示意圖如下安徽三維激光雷達廠商