激光雷達的分類,激光雷達行業具有較高的技術水準與技術壁壘,并同時具有技術創新能力強與產品迭代速度快的特征。其技術發展方向與半導體行業契合度高,激光雷達系統中主要的激光器、探測器、控制及處理單元均能從半導體行業的發展中受益,收發單元陣列化以及主要模塊芯片化是未來的發展趨勢。激光雷達可分成一維(1D)激光雷達、二維(2D)掃描激光雷達和三維(3D)掃描激光雷達。1D激光雷達只能用于線性的測距;2D掃描激光雷達只能在平面上掃描,可用于平面面積與平面形狀的測繪,如家庭用的掃地機器人;3D掃描激光雷達可進行3D空間掃描,用于戶外建筑測繪,它是駕駛輔助和自助式自動駕駛應用的重要車載傳感設備。3D激光雷達可進一步分成3D扇形掃描激光雷達和3D旋轉式掃描激光雷達。激光雷達在災害救援中提供了準確的現場信息支持。山東航道激光雷達
當我們用當前幀和整個點云地圖進行匹配的時候,我們便能得到傳感器在整個地圖中的位姿,從而實現在地圖中的定位。傳感器車規化,固態激光雷達取消了機械結構,能夠擊中目前機械旋轉式的成本和可靠性的痛點,是激光雷達的發展方向。除了這兩大迫切解決的痛點外,目前量產的激光雷達探測距離不足,只能滿足低速場景(如廠區內、校園內等)的應用。日常駕駛、高速駕駛的場景仍在測試過程中。當前機械式激光雷達的價格十分昂貴,Velodyne 在售的 64/32/16 線產品的官方定價分別為 8 萬/4 萬/8 千美元。一方面,機械式激光雷達由發射光源、轉鏡、接收器、微控馬達等精密零部件構成,制造難度大、物料成本較高;另一方面,激光雷達仍未大規模進入量產車、需求量小,研發費用等固定成本難以攤薄。 量產 100 萬臺 VLP-32后,那么其售價將會降至 400 美元左右。深圳連續波激光雷達渠道覽沃 Mid - 360 混合固態技術,成就 360° 全向超大視場角優越性能。
激光雷達的優劣勢分析,優勢:轉鏡式激光雷達的激光發射和接收裝置是固定的,所以即使有【旋轉機構】,也可以把產品體積做小,進而降低成本。并且旋轉機構只有反射鏡,整體重量比較輕,電機軸承的負荷小,系統運行起來更穩定,壽命更長,是符合車規量產的優勢條件。劣勢:因為有【旋轉機構】這樣的機械形式的存在,便不可避免地在長期運行之后,激光雷達的穩定性、準確度會受到影響。其次,一維式的掃描線數少,掃描角度不能到360度。
參數指標:(一)視場角,視場角決定了激光雷達能夠看到的視野范圍,分為水平視場角和垂直視場角,視場角越大,表示視野范圍越大,反之則表示視野范圍越小。以圖3中的激光雷達為例,旋轉式激光雷達的水平視場角為360°,垂直視場角為26.9°,固態激光雷達的水平視場角為60°,垂直視場角為20°。(二)線數,線數越高,表示單位時間內采樣的點就越多,分辨率也就越高,目前無人駕駛車一般采用32線或64線的激光雷達。(三)分辨率,分辨率和激光光束之間的夾角有關,夾角越小,分辨率越高。固態激光雷達的垂直分辨率和水平分辨率大概相當,約為0.1°,旋轉式激光雷達的水平角分辨率為0.08°,垂直角分辨率約為0.4°。抗室外強光,Mid - 360 室內昏暗與室外強光下性能無縫銜接。
激光雷達按照測距方法可以分為飛行時間(TimeofFlight,ToF)測距法、基于相干探測FMCW測距法、以及三角測距法等,其中ToF與FMCW能夠實現室外陽光下較遠的測程(100~250m),是車載激光雷達的好選擇方案。ToF是目前市場車載中長距激光雷達的主流方案,未來隨著FMCW激光雷達整機和上游產業鏈的成熟,ToF和FMCW激光雷達將在市場上并存。根據激光雷達按測距方法分類:ToF法:通過直接測量發射激光與回波信號的時間差,基于光在空氣中的傳播速度得到目標物的距離信息,具有響應速度快、探測精度高的優勢。FMCW法:將發射激光的光頻進行線性調制,通過回波信號與參考光進行相干拍頻得到頻率差,從而間接獲得飛行時間反推目標物距離。FMCW激光雷達具有可直接測量速度信息以及抗干擾(包括環境光和其他激光雷達)的優勢。自動駕駛巴士借助激光雷達感知周邊,安全接送乘客。割草機激光雷達廠家精選
服務機器人借助激光雷達規劃路徑,實現室內外自主移動。山東航道激光雷達
第三組基于回波能量強度判斷采樣點是否為噪點。通常情況下,激光光束受到類似灰塵、雨霧、雪等干擾產生的噪點的回波能量很小。目前按照回波能量強度大小將噪點置信度分為二檔:01 表示回波能量很弱:這類采樣點有較高概率為噪點,例如灰塵點;10 表示回波能量中等,該類采樣點有中等概率為噪點,例如雨霧噪點。噪點置信度越低,說明該點是噪點的可能性越低。第四組基于采樣點的空間位置判斷是否為噪點。例如:激光探測測距只在測量前后兩個距離十分相近的物體時,兩個物體之間可能會產生拉絲狀的噪點。目前按照不同的噪點置信度分為三檔,噪點置信度越低,說明該點是噪點的可能性越低。山東航道激光雷達