寧波第三方軟件檢測報(bào)告

來源: 發(fā)布時(shí)間:2025-04-28

    optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達(dá)局部**優(yōu)解的過程就是梯度下降的過程。使用訓(xùn)練集中的全部樣本訓(xùn)練一次就是一個(gè)epoch,整個(gè)訓(xùn)練集被使用的總次數(shù)就是epoch的值。epoch值的變化會(huì)影響深度神經(jīng)網(wǎng)絡(luò)的權(quán)重值的更新次數(shù)。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,前端融合模型的準(zhǔn)確率變化曲線如圖5所示,模型的對數(shù)損失變化曲線如圖6所示。從圖5和圖6可以看出,當(dāng)epoch值從0增加到5過程中,模型的驗(yàn)證準(zhǔn)確率和驗(yàn)證對數(shù)損失有一定程度的波動(dòng);當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率基本不變,訓(xùn)練和驗(yàn)證對數(shù)損失基本不變;綜合分析圖5和圖6的準(zhǔn)確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。前端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對數(shù)損失是,混淆矩陣如圖7所示,規(guī)范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測閾值變化下檢測率與誤報(bào)率之間的關(guān)系曲線。深圳艾策信息科技:賦能中小企業(yè)的數(shù)字化未來。寧波第三方軟件檢測報(bào)告

寧波第三方軟件檢測報(bào)告,測評

    在介紹諸多知識點(diǎn)的過程當(dāng)中結(jié)合直觀形象的圖表或?qū)嶋H案例進(jìn)行深入淺出的分析,從而使讀者可以更好地理解秋掌握軟件測試?yán)碚撝R,并迅速地運(yùn)用到實(shí)際測試工作中去。本書適合作為各層次高等院校計(jì)算機(jī)及相關(guān)的教學(xué)用書,也可作為軟件測試人員的參考書。目錄前言第1章概述第2章軟件測試基礎(chǔ)第3章單元測試第4章集成測試第5章系統(tǒng)測試……軟件測試技術(shù)圖書2書名:軟件測試技術(shù)層次:高職高專配套:電子課件作者:徐芳出版社:機(jī)械工業(yè)出版社出版時(shí)間:2011-6-21ISBN:開本:16開定價(jià):¥內(nèi)容簡介本書根據(jù)軟件測試教學(xué)的需要,結(jié)合讀者對象未來的職業(yè)要求和定位,除了盡力***闡述軟件測試技術(shù)基本概念外,采取了計(jì)劃、設(shè)計(jì)與開發(fā)、執(zhí)行這樣的工程步驟來描述軟件測試的相關(guān)知識,使學(xué)生在學(xué)習(xí)軟件測試的技術(shù)知識時(shí),能夠同時(shí)獲得工程化思維方式的訓(xùn)練。本書共7章。第1章介紹軟件測試的基本知識;第2章介紹如何制定軟件測試計(jì)劃;第3章介紹測試用例的設(shè)計(jì)和相關(guān)技術(shù);第4章介紹執(zhí)行測試中相關(guān)技術(shù)和方法;第5章介紹實(shí)際工作中各種測試方法;第6章介紹MI公司的一套測試工具的使用,包括功能、性能和測試管理工具;第7章通過一個(gè)實(shí)例,給出了完整的與軟件測試相關(guān)的文檔。代碼滲透測試從傳統(tǒng)到智能:艾策科技助力制造業(yè)升級之路。

寧波第三方軟件檢測報(bào)告,測評

    這種傳統(tǒng)方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經(jīng)過簡單加殼或混淆后又不能檢測,且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測試,確保主流的反**軟件無法識別這些惡意軟件,使得當(dāng)前的反**軟件通常對它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件。基于數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可實(shí)現(xiàn)惡意軟件的智能檢測,基于這些特征的檢測方法也取得了較高的準(zhǔn)確率。受文本分類方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測方法,這類方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。

    **小化對數(shù)損失基本等價(jià)于**大化分類器的準(zhǔn)確度,對于完美的分類器,對數(shù)損失值為0。對數(shù)損失函數(shù)的計(jì)算公式如下:其中,y為輸出變量即輸出的測試樣本的檢測結(jié)果,x為輸入變量即測試樣本,l為損失函數(shù),n為測試樣本(待檢測軟件的二進(jìn)制可執(zhí)行文件)數(shù)目,yij是一個(gè)二值指標(biāo),表示與輸入的第i個(gè)測試樣本對應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個(gè)測試樣本屬于類別j的概率,m為總類別數(shù),本實(shí)施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評價(jià),roc曲線的縱軸是檢測率(true****itiverate),橫軸是誤報(bào)率(false****itiverate),該曲線反映的是隨著檢測閾值變化下檢測率與誤報(bào)率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評價(jià)分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動(dòng)態(tài)鏈接庫文件,執(zhí)行某一個(gè)程序時(shí),相應(yīng)的dll文件就會(huì)被調(diào)用。一個(gè)應(yīng)用程序可使用多個(gè)dll文件,一個(gè)dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開發(fā)的接口。安全審計(jì)發(fā)現(xiàn)日志模塊存在敏感信息明文存儲缺陷。

寧波第三方軟件檢測報(bào)告,測評

    先將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別輸入至一個(gè)深度神經(jīng)網(wǎng)絡(luò)中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行模型訓(xùn)練,得到多模態(tài)深度集成模型。進(jìn)一步的,所述多模態(tài)深度集成模型的隱藏層的***函數(shù)采用relu,輸出層的***函數(shù)采用sigmoid,中間使用dropout層進(jìn)行正則化,優(yōu)化器采用adagrad。進(jìn)一步的,所述訓(xùn)練得到的多模態(tài)深度集成模型中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,且3個(gè)隱含層中間間隔設(shè)置有dropout層;用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,且4個(gè)隱含層中間間隔設(shè)置有dropout層;用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;所述dropout層的dropout率均等于。本發(fā)明實(shí)施例的有益效果是,提出了一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,應(yīng)用了多模態(tài)深度學(xué)習(xí)方法來融合dll和api、格式結(jié)構(gòu)信息、字節(jié)碼n-grams特征。數(shù)據(jù)驅(qū)動(dòng)決策:艾策科技如何提升企業(yè)競爭力。電網(wǎng)軟件測試實(shí)驗(yàn)室

艾策紡織品檢測實(shí)驗(yàn)室配備氣候老化模擬艙,驗(yàn)證戶外用品的耐久性與色牢度。寧波第三方軟件檢測報(bào)告

    不*可以用于回歸測試,也可以為以后的測試提供參考。[4](8)錯(cuò)誤不可避免原則。在測試時(shí)不能首先假設(shè)程序中沒有錯(cuò)誤。[4]軟件測試方法分類編輯軟件測試方法的分類有很多種,以測試過程中程序執(zhí)行狀態(tài)為依據(jù)可分為靜態(tài)測試(StaticTesting,ST)和動(dòng)態(tài)測試(DynamicTesting,DT);以具體實(shí)現(xiàn)算法細(xì)節(jié)和系統(tǒng)內(nèi)部結(jié)構(gòu)的相關(guān)情況為根據(jù)可分黑盒測試、白盒測試和灰盒測試三類;從程序執(zhí)行的方式來分類,可分為人工測試(ManualTesting,MT)和自動(dòng)化測試(AutomaticTesting,AT)。[5]軟件測試方法靜態(tài)測試和動(dòng)態(tài)測試(1)靜態(tài)測試。靜態(tài)測試的含義是被測程序不運(yùn)行,只依靠分析或檢查源程序的語句、結(jié)構(gòu)、過程等來檢查程序是否有錯(cuò)誤。即通過對軟件的需求規(guī)格說明書、設(shè)計(jì)說明書以及源程序做結(jié)構(gòu)分析和流程圖分析,從而來找出錯(cuò)誤。例如不匹配的參數(shù),未定義的變量等。[5](2)動(dòng)態(tài)測試。動(dòng)態(tài)測試與靜態(tài)測試相對應(yīng),其是通過運(yùn)行被測試程序,對得到的運(yùn)行結(jié)果與預(yù)期的結(jié)果進(jìn)行比較分析,同時(shí)分析運(yùn)行效率和健壯性能等。這種方法可簡單分為三個(gè)步驟:構(gòu)造測試實(shí)例、執(zhí)行程序以及分析結(jié)果。[5]軟件測試方法黑盒測試、白盒測試和灰盒測試(1)黑盒測試。寧波第三方軟件檢測報(bào)告

標(biāo)簽: 測評
99国产精品一区二区,欧美日韩精品区一区二区,中文字幕v亚洲日本在线电影,欧美日韩国产三级片
亚洲精品少妇久久久久久 | 中文一区二区三区亚洲欧美 | 日本有码中文字幕第一页在线播放 | 亚洲人成在线影院 | 中国三级在线观看久 | 婷婷色五月综合激情六月导航 |