廣州軟件檢測報告

來源: 發布時間:2025-04-28

    optimizer)采用的是adagrad,batch_size是40。深度神經網絡模型訓練基本都是基于梯度下降的,尋找函數值下降速度**快的方向,沿著下降方向迭代,迅速到達局部**優解的過程就是梯度下降的過程。使用訓練集中的全部樣本訓練一次就是一個epoch,整個訓練集被使用的總次數就是epoch的值。epoch值的變化會影響深度神經網絡的權重值的更新次數。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,前端融合模型的準確率變化曲線如圖5所示,模型的對數損失變化曲線如圖6所示。從圖5和圖6可以看出,當epoch值從0增加到5過程中,模型的驗證準確率和驗證對數損失有一定程度的波動;當epoch值從5到50的過程中,前端融合模型的訓練準確率和驗證準確率基本不變,訓練和驗證對數損失基本不變;綜合分析圖5和圖6的準確率和對數損失變化曲線,選取epoch的較優值為30。確定模型的訓練迭代數為30后,進行了10折交叉驗證實驗。前端融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖7所示,規范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測閾值變化下檢測率與誤報率之間的關系曲線。負載測試證實系統最大承載量較宣傳數據低18%。廣州軟件檢測報告

廣州軟件檢測報告,測評

    本發明屬于惡意軟件防護技術領域::,涉及一種基于多模態深度學習的惡意軟件檢測方法。背景技術:::惡意軟件是指在未明確提示用戶或未經用戶許可的情況下,故意編制或設置的,對網絡或系統會產生威脅或潛在威脅的計算機軟件。常見的惡意軟件有計算機**(簡稱**)、特洛伊木馬(簡稱木馬)、計算機蠕蟲(簡稱蠕蟲)、后門、邏輯**等。惡意軟件可能在用戶不知情的情況下竊取計算機用戶的信息和隱私,也可能非法獲得計算機系統和網絡資源的控制,破壞計算機和網絡的可信性、完整性和可用性,從而為惡意軟件控制者謀取非法利益。騰訊安全發布的《2017年度互聯網安全報告》顯示,2017年騰訊電腦管家pc端總計攔截**近30億次,平均每月攔截木馬**近,共發現**或木馬***。這些數目龐大、名目繁多的惡意軟件侵蝕著我國的***、經濟、文化、***等各個領域的信息安全,帶來了前所未有的挑戰。當前的反**軟件主要采用基于特征碼的檢測方法,這種方法通過對代碼進行充分研究,獲得惡意軟件特征值(即每種惡意軟件所獨有的十六進制代碼串),如字節序列、特定的字符串等,通過匹配查找軟件中是否包含惡意軟件特征庫中的特征碼來判斷其是否為惡意軟件。第三方軟件性能測試報告多少錢第三方測評顯示軟件運行穩定性達99.8%,未發現重大系統崩潰隱患。

廣州軟件檢測報告,測評

    將三種模態特征和三種融合方法的結果進行了對比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態特征的檢測準確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優于基于dll和api信息、pe格式結構特征的實驗結果,但稍弱于基于字節碼3-grams特征的結果。中間融合是三種融合方法中**好的,各項性能指標都非常接近**優值。表3實驗結果對比本實施例提出了基于多模態深度學習的惡意軟件檢測方法,提取了三種模態的特征(dll和api信息、pe格式結構信息和字節碼3-grams),提出了通過三種融合方式(前端融合、后端融合、中間融合)集成三種模態的特征,有效提高惡意軟件檢測的準確率和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為,各項性能指標已接近**優值。考慮到樣本集可能存在噪聲,本實施例提出的方法已取得了比較理想的結果。由于惡意軟件很難同時偽造多個模態的特征,本實施例提出的方法比單模態特征方法更魯棒。以上所述*為本發明的較佳實施例而已,并非用于限定本發明的保護范圍。

    評審步驟以及評審記錄機制。3)評審項由上層****。通過培訓參加評審的人員,使他們理解和遵循相牢的評審政策,評審步驟。(II)建立測試過程的測量程序測試過程的側量程序是評價測試過程質量,改進測試過程的基礎,對監視和控制測試過程至關重要。測量包括測試進展,測試費用,軟件錯誤和缺陷數據以及產品淵量等。建立淵試測量程序有3個子目標:1)定義**范圍內的測試過程測量政策和目標。2)制訂測試過程測量計劃。測量計劃中應給出收集,分析和應用測量數據的方法。3)應用測量結果制訂測試過程改進計劃。(III)軟件質量評價軟件質量評價內容包括定義可測量的軟件質量屬性,定義評價軟件工作產品的質量目標等項工作。軟件質量評價有2個子目標:1)管理層,測試組和軟件質量保證組要制訂與質量有關的政策,質量目標和軟件產品質量屬性。2)測試過程應是結構化,己測量和己評價的,以保證達到質量目標。第五級?優化,預防缺陷和質量控制級由于本級的測試過程是可重復,已定義,已管理和己測量的,因此軟件**能夠優化調整和持續改進測試過程。測試過程的管理為持續改進產品質量和過程質量提供指導,并提供必要的基礎設施。優化,預防缺陷和質量控制級有3個要實現的成熟度目標:。艾策醫療檢測中心為體外診斷試劑提供全流程合規性驗證服務。

廣州軟件檢測報告,測評

    快速原型模型部分需求-原型-補充-運行外包公司預先不能明確定義需求的軟件系統的開發,更好的滿足用戶需求并減少由于軟件需求不明確帶來的項目開發風險。不適合大型系統的開發,前提要有一個展示性的產品原型,在一定程度上的補充,限制開發人員的創新。螺旋模型每次功能都要**行風險評估,需求設計-測試很大程度上是一種風險驅動的方法體系,在每個階段循環前,都進行風險評估。需要有相當豐富的風險評估經驗和專門知識,在風險較大的項目開發中,很有必要,多次迭代,增加成本。軟件測試模型需求分析-概要設計-詳細設計-開發-單元測試-集成測試-系統測試-驗收測試***清楚標識軟件開發的階段包含底層測試和高層測試采用自頂向下逐步求精的方式把整個開發過程分成不同的階段,每個階段的工作都很明確,便于控制開發過程。缺點程序已經完成,錯誤在測試階段發現或沒有發現,不能及時修改而且需求經常變化導致V步驟反復執行,工作量很大。W模型開發一個V測試一個V用戶需求驗收測試設計需求分析系統測試設計概要設計集成測試設計詳細設計單元測試設計編碼單元測試集成集成測試運行系統測試交付驗收測試***測試更早的介入,可以發現開發初期的缺陷。兼容性測試涵蓋35款設備,通過率91.4%。軟件驗收報告

數據安全與合規:艾策科技的最佳實踐。廣州軟件檢測報告

    嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為。有效解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時偽造良性軟件的多個抽象層次的特征以逃避檢測,本發明實施例同時融合軟件的二進制可執行文件的多個抽象層次的特征,可準確檢測出偽造良性軟件特征的惡意軟件,解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法難以檢測出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發明實施例或現有技術中的技術方案,下面將對實施例或現有技術描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖**是本發明的一些實施例,對于本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。廣州軟件檢測報告

標簽: 測評
99国产精品一区二区,欧美日韩精品区一区二区,中文字幕v亚洲日本在线电影,欧美日韩国产三级片
在线观看国产日韩欧美 | 日韩福利在线看 | 在线人成免费播放 | 丝袜一区二区三区在线观看 | 精品偷拍视频一区二区三区 | 亚洲综合网站精品一区二区 |