且4個隱含層中間間隔設置有dropout層。用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,其***個隱含層的神經元個數是64,第二個神經元的隱含層個數是10,且2個隱含層中間設置有dropout層。且所有dropout層的dropout率等于。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,中間融合模型的準確率變化曲線如圖17所示,模型的對數損失變化曲線如圖18所示。從圖17和圖18可以看出,當epoch值從0增加到20過程中,模型的訓練準確率和驗證準確率快速提高,模型的訓練對數損失和驗證對數損失快速減少;當epoch值從30到50的過程中,中間融合模型的訓練準確率和驗證準確率基本保持不變,訓練對數損失緩慢下降;綜合分析圖17和圖18的準確率和對數損失變化曲線,選取epoch的較優值為30。確定模型的訓練迭代數為30后,進行了10折交叉驗證實驗。中間融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖19所示,規范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經非常接近auc的**優值1。(7)實驗結果比對為了綜合評估本實施例提出融合方案的綜合性能。艾策檢測針對智能穿戴設備開發動態壓力測試系統,確保人機交互的舒適性與安全性。信息系統軟件評測報價
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區分惡意軟件和良性軟件的短序列特征,是因為字節碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態數據融合方法。寧波第三方軟件評測單位第三方實驗室驗證數據處理速度較上代提升1.8倍。
并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入步驟s2訓練得到的多模態深度集成模型中,對測試樣本進行檢測并得出檢測結果。實驗結果與分析(1)樣本數據集選取實驗評估使用了不同時期的惡意軟件和良性軟件樣本,包含了7871個良性軟件樣本和8269個惡意軟件樣本,其中4103個惡意軟件樣本是2011年以前發現的,4166個惡意軟件樣本是近年來新發現的;3918個良性軟件樣本是從全新安裝的windowsxpsp3系統中收集的,3953個良性軟件樣本是從全新安裝的32位windows7系統中收集的。所有的惡意軟件樣本都是從vxheavens網站中收集的,所有的樣本格式都是windowspe格式的,樣本數據集構成如表1所示。表1樣本數據集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計82697871(2)評價指標及方法分類性能主要用兩個指標來評估:準確率和對數損失。準確率測量所有預測中正確預測的樣本占總樣本的比例,*憑準確率通常不足以評估預測的魯棒性,因此還需要使用對數損失。對數損失(logarithmicloss),也稱交叉熵損失(cross-entropyloss),是在概率估計上定義的,用于測量預測類別與真實類別之間的差距大小。
***級初始級TMM初始級軟件測試過程的特點是測試過程無序,有時甚至是混亂的,幾乎沒有妥善定義的。初始級中軟件的測試與調試常常被混為一談,軟件開發過程中缺乏測試資源,工具以及訓練有素的測試人員。初始級的軟件測試過程沒有定義成熟度目標。第二級定義級TMM的定義級中,測試己具備基本的測試技術和方法,軟件的測試與調試己經明確地被區分開。這時,測試被定義為軟件生命周期中的一個階段,它緊隨在編碼階段之后。但在定義級中,測試計劃往往在編碼之后才得以制訂,這顯然有背于軟件工程的要求。TMM的定義級中需實現3個成熟度目標:制訂測試與調試目標,啟動測試計劃過程,制度化基本的測試技術和方法。(I)制訂測試與調試目標軟件**必須消晰地區分軟件開發的測試過程與調試過程,識別各自的目標,任務和括動。正確區分這兩個過程是提高軟件**測試能力的基礎。與調試工作不同,測試工作是一種有計劃的活動,可以進行管理和控制。這種管理和控制活動需要制訂相應的策略和政策,以確定和協調這兩個過程。制訂測試與調試目標包含5個子成熟度目標:1)分別形成測試**和調試**,并有經費支持。2)規劃并記錄測試目標。3)規劃井記錄調試目標。4)將測試和調試目標形成文檔。用戶隱私測評確認數據采集范圍超出聲明條款3項。
12)把節裝入到vmm的地址空間;(13)可選頭部的sizeofcode域取值不正確;(14)含有可疑標志。此外,惡意軟件和良性軟件間以下格式特征也存在明顯的統計差異:(1)證書表是軟件廠商的可認證的聲明,惡意軟件很少有證書表,而良性軟件大部分都有軟件廠商可認證的聲明;(2)惡意軟件的調試數據也明顯小于正常文件的,這是因為惡意軟件為了增加調試的難度,很少有調試數據;(3)惡意軟件4個節(.text、.rsrc、.reloc和.rdata)的characteristics屬性和良性軟件的也有明顯差異,characteristics屬性通常**該節是否可讀、可寫、可執行等,部分惡意軟件的代碼節存在可寫異常,只讀數據節和資源節存在可寫、可執行異常等;(4)惡意軟件資源節的資源個數也明顯少于良性軟件的,如消息表、組圖表、版本資源等,這是因為惡意軟件很少使用圖形界面資源,也很少有版本信息。pe文件很多格式屬性沒有強制限制,文件完整性約束松散,存在著較多的冗余屬性和冗余空間,為pe格式惡意軟件的傳播和隱藏創造了條件。此外,由于惡意軟件為了方便傳播和隱藏,盡一切可能的減小文件大小,文件結構的某些部分重疊,同時對一些屬性進行了特別設置以達到anti-dump、anti-debug或抗反匯編。專業機構認證該程序內存管理效率優于行業平均水平23%。重慶第三方軟件測試實驗室
覆蓋軟件功能與性能的多維度檢測方案設計與實施!信息系統軟件評測報價
對一些質量要求和可靠性要求較高的模塊,一般要滿足所需條件的組合覆蓋或者路徑覆蓋標準。[2]軟件測試方法集成測試集成測試是軟件測試的第二階段,在這個階段,通常要對已經嚴格按照程序設計要求和標準組裝起來的模塊同時進行測試,明確該程序結構組裝的正確性,發現和接口有關的問題,比如模塊接口的數據是否會在穿越接口時發生丟失;各個模塊之間因某種疏忽而產生不利的影響;將模塊各個子功能組合起來后產生的功能要求達不到預期的功能要求;一些在誤差范圍內且可接受的誤差由于長時間的積累進而到達了不能接受的程度;數據庫因單個模塊發生錯誤造成自身出現錯誤等等。同時因集成測試是界于單元測試和系統測試之間的,所以,集成測試具有承上啟下的作用。因此有關測試人員必須做好集成測試工作。在這一階段,一般采用的是白盒和黑盒結合的方法進行測試,驗證這一階段設計的合理性以及需求功能的實現性。[2]軟件測試方法系統測試一般情況下,系統測試采用黑盒法來進行測試的,以此來檢查該系統是否符合軟件需求。本階段的主要測試內容包括健壯性測試、性能測試、功能測試、安裝或反安裝測試、用戶界面測試、壓力測試、可靠性及安全性測試等。信息系統軟件評測報價