第三方CNAS軟件測評服務

來源: 發布時間:2025-04-26

    收藏查看我的收藏0有用+1已投票0軟件測試技術編輯鎖定討論上傳視頻軟件測試技術是軟件開發過程中的一個重要組成部分,是貫穿整個軟件開發生命周期、對軟件產品(包括階段性產品)進行驗證和確認的活動過程,其目的是盡快盡早地發現在軟件產品中所存在的各種問題——與用戶需求、預先定義的不一致性。檢查軟件產品的bug。寫成測試報告,交于開發人員修改。軟件測試人員的基本目標是發現軟件中的錯誤。中文名軟件測試技術簡介單元測試、集成測試主要步驟測試設計與開發常見測試回歸測試功能測試目錄1主要步驟2基本功能3測試目標4測試目的5常見測試6測試分類7測試工具8同名圖書?圖書1?圖書2?圖書3?圖書4軟件測試技術主要步驟編輯1、測試計劃2、測試設計與開發3、執行測試軟件測試技術基本功能編輯1、驗證(Verification)2、確認(Validation)軟件測試人員應具備的知識:1、軟件測試技術2、被測試應用程序及相關應用領域軟件測試技術測試目標編輯1、軟件測試人員所追求的是盡可能早地找出軟件的錯誤;2、軟件測試人員必須確保找出的軟件錯誤得以關閉。艾策紡織品檢測實驗室配備氣候老化模擬艙,驗證戶外用品的耐久性與色牢度。第三方CNAS軟件測評服務

第三方CNAS軟件測評服務,測評

    且4個隱含層中間間隔設置有dropout層。用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,其***個隱含層的神經元個數是64,第二個神經元的隱含層個數是10,且2個隱含層中間設置有dropout層。且所有dropout層的dropout率等于。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,中間融合模型的準確率變化曲線如圖17所示,模型的對數損失變化曲線如圖18所示。從圖17和圖18可以看出,當epoch值從0增加到20過程中,模型的訓練準確率和驗證準確率快速提高,模型的訓練對數損失和驗證對數損失快速減少;當epoch值從30到50的過程中,中間融合模型的訓練準確率和驗證準確率基本保持不變,訓練對數損失緩慢下降;綜合分析圖17和圖18的準確率和對數損失變化曲線,選取epoch的較優值為30。確定模型的訓練迭代數為30后,進行了10折交叉驗證實驗。中間融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖19所示,規范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經非常接近auc的**優值1。(7)實驗結果比對為了綜合評估本實施例提出融合方案的綜合性能。軟件功能性評測2025 年 IT 趨勢展望:深圳艾策的五大技術突破。

第三方CNAS軟件測評服務,測評

    此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發明實施例的目的在于提供一種基于多模態深度學習的惡意軟件檢測方法,以解決現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測準確率不高、檢測可靠性低、泛化性和魯棒性不佳的問題,以及其難以檢測出偽造良性軟件特征的惡意軟件的問題。本發明實施例所采用的技術方案是,基于多模態深度學習的惡意軟件檢測方法,按照以下步驟進行:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖。

    2)軟件產品登記測試流程材料準備并遞交------實驗室受理------環境準備------測試實施------輸出報告------通知客戶------繳費并取報告服務區域北京、上海、廣州、深圳、重慶、杭州、南京、蘇州等**各地軟件測試報告|軟件檢測報告以“軟件質量為目標,貫穿整個軟件生命周期、覆蓋軟件測試生命周期”的**測試服務模式,真正做到了“軟件測試應該越早介入越好的原則”,從軟件生命周期的每一個環節把控軟件產品質量;提供軟件產品質量度量依據,提供軟件可靠性分析依據。軟件成果鑒定測試結果可以作為軟件類科技成果鑒定的依據。提供功能、性能、標準符合性、易用性、安全性、可靠性等專項測試服務。科技項目驗收測試報告及鑒定結論,可以真實反映指標的技術水平和市場價值,有助于項目成交和產品營銷。代碼審計發現2處潛在內存泄漏風險,建議版本迭代修復。

第三方CNAS軟件測評服務,測評

    特征之間存在部分重疊,但特征類型間存在著互補,融合這些不同抽象層次的特征可更好的識別軟件的真正性質。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時偽造多個抽象層次的特征逃避檢測。基于該觀點,本發明實施例提出一種基于多模態深度學習的惡意軟件檢測方法,以實現對惡意軟件的有效檢測,提取了三種模態的特征(dll和api信息、pe格式結構信息和字節碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態的特征,有效提高惡意軟件檢測的準確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖;統計當前軟件樣本的導入節中引用的dll和api,提取得到當前軟件樣本的二進制可執行文件的dll和api信息的特征表示。對當前軟件樣本的二進制可執行文件進行格式結構解析,并按照格式規范提取**該軟件樣本的格式結構信息,得到該軟件樣本的二進制可執行文件的pe格式結構信息的特征表示。企業數字化轉型指南:艾策科技的實用建議。軟件功能性評測

深圳艾策信息科技:賦能中小企業的數字化未來。第三方CNAS軟件測評服務

    optimizer)采用的是adagrad,batch_size是40。深度神經網絡模型訓練基本都是基于梯度下降的,尋找函數值下降速度**快的方向,沿著下降方向迭代,迅速到達局部**優解的過程就是梯度下降的過程。使用訓練集中的全部樣本訓練一次就是一個epoch,整個訓練集被使用的總次數就是epoch的值。epoch值的變化會影響深度神經網絡的權重值的更新次數。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,前端融合模型的準確率變化曲線如圖5所示,模型的對數損失變化曲線如圖6所示。從圖5和圖6可以看出,當epoch值從0增加到5過程中,模型的驗證準確率和驗證對數損失有一定程度的波動;當epoch值從5到50的過程中,前端融合模型的訓練準確率和驗證準確率基本不變,訓練和驗證對數損失基本不變;綜合分析圖5和圖6的準確率和對數損失變化曲線,選取epoch的較優值為30。確定模型的訓練迭代數為30后,進行了10折交叉驗證實驗。前端融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖7所示,規范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測閾值變化下檢測率與誤報率之間的關系曲線。第三方CNAS軟件測評服務

標簽: 測評
99国产精品一区二区,欧美日韩精品区一区二区,中文字幕v亚洲日本在线电影,欧美日韩国产三级片
亚洲午夜精品久久久久 | 在线国产精品看片 | 在线看午夜福利片国产片 | 亚洲中文字幕精品有码在线 | 亚洲欧美精品久久久 | 亚洲国产第一区第二区第三区 |