生成取值表。3把取值表與選擇的正交表進行映射控件數Ln(取值數)3個控件5個取值5的3次冪混合正交表當控件的取值數目水平不一致時候,使用allp**rs工具生成1等價類劃分法劃分值2邊界值分析法邊界值3錯誤推斷法經驗4因果圖分析法關系5判定表法條件和結果6流程圖法流程路徑梳理7場景法主要功能和業務的事件8正交表先關注主要功能和業務流程,業務邏輯是否正確實現,考慮場景法需要輸入數據的地方,考慮等價類劃分法+邊界值分析法,發現程序錯誤的能力**強存在輸入條件的組合情況,考慮因果圖判定表法多種參數配置組合情況,正交表排列法采用錯誤推斷法再追加測試用例。需求分析場景法分析主要功能輸入的等價類邊界值輸入的各種組合因果圖判定表多種參數配置正交表錯誤推斷法經驗軟件缺陷軟件產品中存在的問題,用戶所需要的功能沒有完全實現。隱私合規檢測確認用戶數據加密符合GDPR標準要求。18401檢測報告
2)軟件產品登記測試流程材料準備并遞交------實驗室受理------環境準備------測試實施------輸出報告------通知客戶------繳費并取報告服務區域北京、上海、廣州、深圳、重慶、杭州、南京、蘇州等**各地軟件測試報告|軟件檢測報告以“軟件質量為目標,貫穿整個軟件生命周期、覆蓋軟件測試生命周期”的**測試服務模式,真正做到了“軟件測試應該越早介入越好的原則”,從軟件生命周期的每一個環節把控軟件產品質量;提供軟件產品質量度量依據,提供軟件可靠性分析依據。軟件成果鑒定測試結果可以作為軟件類科技成果鑒定的依據。提供功能、性能、標準符合性、易用性、安全性、可靠性等專項測試服務。科技項目驗收測試報告及鑒定結論,可以真實反映指標的技術水平和市場價值,有助于項目成交和產品營銷。江蘇軟件評測機構可靠性評估連續運行72小時出現2次非致命錯誤。
先將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖分別輸入至一個深度神經網絡中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個深度神經網絡的輸入進行模型訓練,得到多模態深度集成模型。進一步的,所述多模態深度集成模型的隱藏層的***函數采用relu,輸出層的***函數采用sigmoid,中間使用dropout層進行正則化,優化器采用adagrad。進一步的,所述訓練得到的多模態深度集成模型中,用于抽取dll和api信息特征視圖的深度神經網絡包含3個隱含層,且3個隱含層中間間隔設置有dropout層;用于抽取格式信息特征視圖的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;用于抽取字節碼n-grams特征視圖的深度神經網絡包含4個隱含層,且4個隱含層中間間隔設置有dropout層;用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;所述dropout層的dropout率均等于。本發明實施例的有益效果是,提出了一種基于多模態深度學習的惡意軟件檢測方法,應用了多模態深度學習方法來融合dll和api、格式結構信息、字節碼n-grams特征。
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為。有效解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時偽造良性軟件的多個抽象層次的特征以逃避檢測,本發明實施例同時融合軟件的二進制可執行文件的多個抽象層次的特征,可準確檢測出偽造良性軟件特征的惡意軟件,解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法難以檢測出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發明實施例或現有技術中的技術方案,下面將對實施例或現有技術描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖**是本發明的一些實施例,對于本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。滲透測試報告暴露2個高危API接口需緊急加固。
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區分惡意軟件和良性軟件的短序列特征,是因為字節碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態數據融合方法。用戶隱私測評確認數據采集范圍超出聲明條款3項。軟件檢測機構有哪些公司可以做
網絡安全新時代:深圳艾策的防御策略解析。18401檢測報告
步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,基于多模態數據融合方法,將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入深度神經網絡,訓練多模態深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本,并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入步驟s2訓練得到的多模態深度集成模型中,對測試樣本進行檢測并得出檢測結果。進一步的,所述提取軟件樣本的二進制可執行文件的dll和api信息的特征表示,是統計當前軟件樣本的導入節中引用的dll和api;所述提取軟件樣本的二進制可執行文件的pe格式結構信息的特征表示,是先對當前軟件樣本的二進制可執行文件進行格式結構解析,然后按照格式規范提取**該軟件樣本的格式結構信息;所述提取軟件樣本的二進制可執行文件的字節碼n-grams的特征表示,是先將當前軟件樣本件的二進制可執行文件轉換為十六進制字節碼序列,然后采用n-grams方法在十六進制字節碼序列中滑動,產生大量的連續部分重疊的短序列特征。進一步的,采用3-grams方法在十六進制字節碼序列中滑動產生連續部分重疊的短序列特征。進一步的。18401檢測報告