源代碼審計報告包含哪些內容呢

來源: 發布時間:2025-04-19

    每一種信息的來源或者形式,都可以稱為一種模態。例如,人有觸覺,聽覺,視覺,嗅覺。多模態機器學習旨在通過機器學習的方法實現處理和理解多源模態信息的能力。多模態學習從1970年代起步,經歷了幾個發展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創建復雜的深度多模態模型。目前,多模態數據融合主要有三種融合方式:前端融合(early-fusion)即數據水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個**的數據集融合成一個單一的特征向量空間,然后將其用作機器學習算法的輸入,訓練機器學習模型,如圖1所示。由于多模態數據的前端融合往往無法充分利用多個模態數據間的互補性,且前端融合的原始數據通常包含大量的冗余信息。因此,多模態前端融合方法常常與特征提取方法相結合以剔除冗余信息,基于領域經驗從每個模態中提取更高等別的特征表示,或者應用深度學習算法直接學習特征表示,然后在特性級別上進行融合。后端融合則是將不同模態數據分別訓練好的分類器輸出決策進行融合,如圖2所示。壓力測試表明系統在5000并發用戶時響應延遲激增300%。源代碼審計報告包含哪些內容呢

源代碼審計報告包含哪些內容呢,測評

    并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入步驟s2訓練得到的多模態深度集成模型中,對測試樣本進行檢測并得出檢測結果。實驗結果與分析(1)樣本數據集選取實驗評估使用了不同時期的惡意軟件和良性軟件樣本,包含了7871個良性軟件樣本和8269個惡意軟件樣本,其中4103個惡意軟件樣本是2011年以前發現的,4166個惡意軟件樣本是近年來新發現的;3918個良性軟件樣本是從全新安裝的windowsxpsp3系統中收集的,3953個良性軟件樣本是從全新安裝的32位windows7系統中收集的。所有的惡意軟件樣本都是從vxheavens網站中收集的,所有的樣本格式都是windowspe格式的,樣本數據集構成如表1所示。表1樣本數據集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計82697871(2)評價指標及方法分類性能主要用兩個指標來評估:準確率和對數損失。準確率測量所有預測中正確預測的樣本占總樣本的比例,*憑準確率通常不足以評估預測的魯棒性,因此還需要使用對數損失。對數損失(logarithmicloss),也稱交叉熵損失(cross-entropyloss),是在概率估計上定義的,用于測量預測類別與真實類別之間的差距大小。重慶第三方軟件檢測單位艾策檢測針對智能穿戴設備開發動態壓力測試系統,確保人機交互的舒適性與安全性。

源代碼審計報告包含哪些內容呢,測評

    先將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖分別輸入至一個深度神經網絡中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個深度神經網絡的輸入進行模型訓練,得到多模態深度集成模型。進一步的,所述多模態深度集成模型的隱藏層的***函數采用relu,輸出層的***函數采用sigmoid,中間使用dropout層進行正則化,優化器采用adagrad。進一步的,所述訓練得到的多模態深度集成模型中,用于抽取dll和api信息特征視圖的深度神經網絡包含3個隱含層,且3個隱含層中間間隔設置有dropout層;用于抽取格式信息特征視圖的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;用于抽取字節碼n-grams特征視圖的深度神經網絡包含4個隱含層,且4個隱含層中間間隔設置有dropout層;用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;所述dropout層的dropout率均等于。本發明實施例的有益效果是,提出了一種基于多模態深度學習的惡意軟件檢測方法,應用了多模態深度學習方法來融合dll和api、格式結構信息、字節碼n-grams特征。

    針對cma和cnas第三方軟件測試機構的資質,客戶在確定合作前需要同時確認資質的有效期,因為軟件測試資質都是有一定有效期的,如果軟件測試公司在業務開展的過程中有違規或者不受認可的操作和行為,有可能會被吊銷資質執照,這一點需要特別注意。第三,軟件測試機構的資質所涵蓋的業務參數,通常來講,軟件測試報告一般針對軟件的八大參數進行測試,包括軟件功能測試、軟件性能測試、軟件信息安全測試、軟件兼容性測試、軟件可靠性測試、軟件穩定性測試、軟件可移植測試、軟件易用性測試。這幾個參數在cma或者cnas的官方網站都可以進行查詢和確認第四,軟件測試機構或者公司的本身信用背景,那么用戶可以去檢查一下公司的信用記錄,是否有不良的投訴或者法律糾紛,可以確保第三方軟件測試機構出具的軟件測試報告的效力也沒有問題。那么,總而言之,找一家靠譜的第三方軟件測試機構還是需要用戶從自己的軟件測試業務需求場景出發,認真仔細比較資質許可的正規性,然后可以完成愉快的合作和軟件測試報告的交付。云計算與 AI 融合:深圳艾策的創新解決方案。

源代碼審計報告包含哪些內容呢,測評

    此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發明實施例的目的在于提供一種基于多模態深度學習的惡意軟件檢測方法,以解決現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測準確率不高、檢測可靠性低、泛化性和魯棒性不佳的問題,以及其難以檢測出偽造良性軟件特征的惡意軟件的問題。本發明實施例所采用的技術方案是,基于多模態深度學習的惡意軟件檢測方法,按照以下步驟進行:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖。兼容性測試涵蓋35款設備,通過率91.4%。軟件安全性能測試

能耗評估顯示后臺服務耗電量超出行業基準值42%。源代碼審計報告包含哪些內容呢

    將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入深度神經網絡,訓練多模態深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖的特征,融合成一個單一的特征向量空間,然后將其作為深度神經網絡模型的輸入,訓練多模態深度集成模型;(2)方案二:首先利用訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖分別訓練深度神經網絡模型,合并訓練的三個深度神經網絡模型的決策輸出,并將其作為感知機的輸入,訓練得到**終的多模態深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個深度神經網絡分別學習訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖的高等特征表示,并合并學習得到的訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖的高等特征表示融合成一個單一的特征向量空間,然后將其作為下一個深度神經網絡的輸入,訓練得到多模態深度神經網絡模型。步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本。源代碼審計報告包含哪些內容呢

標簽: 測評
99国产精品一区二区,欧美日韩精品区一区二区,中文字幕v亚洲日本在线电影,欧美日韩国产三级片
一本久久a久久精品综合夜夜 | 欧美一级在线小说视频 | 亚洲精品视频在线看 | 一本在线观看资源网站 | 亚洲精品成a人片在线观看 尹人久久久香蕉精品 | 五月天激情在线麻豆 |