收藏查看我的收藏0有用+1已投票0軟件測試方法編輯鎖定本詞條由“科普**”科學百科詞條編寫與應用工作項目審核。軟件測試是使用人工或自動的手段來運行或測定某個軟件系統的過程,其目的在于檢驗它是否滿足規定的需求或弄清預期結果與實際結果之間的差別。[1]從是否關心軟件內部結構和具體實現的角度劃分,測試方法主要有白盒測試和黑盒測試。白盒測試方法主要有代碼檢査法、靜態結構分析法、靜態質量度量法、邏輯覆蓋法、基夲路徑測試法、域測試、符號測試、路徑覆蓋和程序變異。黑盒測試方法主要包括等價類劃分法、邊界值分析法、錯誤推測法、因果圖法、判定表驅動法、正交試驗設計法、功能圖法、場景法等。[1]從是否執行程序的角度劃分,測試方法又可分為靜態測試和動態測試。靜態測試包括代碼檢査、靜態結構分析、代碼質量度量等。動態測試由3部分組成:構造測試實例、執行程序和分析程序的輸出結果。用戶體驗測評中界面交互評分低于同類產品均值15.6%。河北第三方軟件評測中心
并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入步驟s2訓練得到的多模態深度集成模型中,對測試樣本進行檢測并得出檢測結果。實驗結果與分析(1)樣本數據集選取實驗評估使用了不同時期的惡意軟件和良性軟件樣本,包含了7871個良性軟件樣本和8269個惡意軟件樣本,其中4103個惡意軟件樣本是2011年以前發現的,4166個惡意軟件樣本是近年來新發現的;3918個良性軟件樣本是從全新安裝的windowsxpsp3系統中收集的,3953個良性軟件樣本是從全新安裝的32位windows7系統中收集的。所有的惡意軟件樣本都是從vxheavens網站中收集的,所有的樣本格式都是windowspe格式的,樣本數據集構成如表1所示。表1樣本數據集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計82697871(2)評價指標及方法分類性能主要用兩個指標來評估:準確率和對數損失。準確率測量所有預測中正確預測的樣本占總樣本的比例,*憑準確率通常不足以評估預測的魯棒性,因此還需要使用對數損失。對數損失(logarithmicloss),也稱交叉熵損失(cross-entropyloss),是在概率估計上定義的,用于測量預測類別與真實類別之間的差距大小。寧波第三方軟件檢測報告如何選擇適合企業的 IT 解決方案?
為了有效保證這一階段測試的客觀性,必須由**的測試小組來進行相關的系統測試。另外,系統測試過程較為復雜,由于在系統測試階段不斷變更需求造成功能的刪除或增加,從而使程序不斷出現相應的更改,而程序在更改后可能會出現新的問題,或者原本沒有問題的功能由于更改導致出現問題。所以,測試人員必須進行回歸測試。[2]軟件測試方法驗收測試驗收測試是**后一個階段的測試操作,在軟件產品投入正式運行前的所要進行的測試工作。和系統測試相比而言,驗收測試與之的區別就只是測試人員不同,驗收測試則是由用戶來執行這一操作的。驗收測試的主要目標是為向用戶展示所開發出來的軟件符合預定的要求和有關標準,并驗證軟件實際工作的有效性和可靠性,確保用戶能用該軟件順利完成既定的任務和功能。通過了驗收測試,該產品就可進行發布。但是,在實際交付給用戶之后,開發人員是無法預測該軟件用戶在實際運用過程中是如何使用該程序的,所以從用戶的角度出發,測試人員還應進行Alpha測試或Beta測試這兩種情形的測試。Alpha測試是在軟件開發環境下由用戶進行的測試,或者模擬實際操作環境進而進行的測試。
先將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖分別輸入至一個深度神經網絡中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個深度神經網絡的輸入進行模型訓練,得到多模態深度集成模型。進一步的,所述多模態深度集成模型的隱藏層的***函數采用relu,輸出層的***函數采用sigmoid,中間使用dropout層進行正則化,優化器采用adagrad。進一步的,所述訓練得到的多模態深度集成模型中,用于抽取dll和api信息特征視圖的深度神經網絡包含3個隱含層,且3個隱含層中間間隔設置有dropout層;用于抽取格式信息特征視圖的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;用于抽取字節碼n-grams特征視圖的深度神經網絡包含4個隱含層,且4個隱含層中間間隔設置有dropout層;用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;所述dropout層的dropout率均等于。本發明實施例的有益效果是,提出了一種基于多模態深度學習的惡意軟件檢測方法,應用了多模態深度學習方法來融合dll和api、格式結構信息、字節碼n-grams特征。2025 年 IT 趨勢展望:深圳艾策的五大技術突破。
2)軟件產品登記測試流程材料準備并遞交------實驗室受理------環境準備------測試實施------輸出報告------通知客戶------繳費并取報告服務區域北京、上海、廣州、深圳、重慶、杭州、南京、蘇州等**各地軟件測試報告|軟件檢測報告以“軟件質量為目標,貫穿整個軟件生命周期、覆蓋軟件測試生命周期”的**測試服務模式,真正做到了“軟件測試應該越早介入越好的原則”,從軟件生命周期的每一個環節把控軟件產品質量;提供軟件產品質量度量依據,提供軟件可靠性分析依據。軟件成果鑒定測試結果可以作為軟件類科技成果鑒定的依據。提供功能、性能、標準符合性、易用性、安全性、可靠性等專項測試服務??萍柬椖框炇諟y試報告及鑒定結論,可以真實反映指標的技術水平和市場價值,有助于項目成交和產品營銷。第三方驗證實際啟動速度較廠商宣稱慢0.7秒。代碼審計檢測項
可靠性評估連續運行72小時出現2次非致命錯誤。河北第三方軟件評測中心
此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發明實施例的目的在于提供一種基于多模態深度學習的惡意軟件檢測方法,以解決現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測準確率不高、檢測可靠性低、泛化性和魯棒性不佳的問題,以及其難以檢測出偽造良性軟件特征的惡意軟件的問題。本發明實施例所采用的技術方案是,基于多模態深度學習的惡意軟件檢測方法,按照以下步驟進行:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖。河北第三方軟件評測中心