綜合上面的分析可以看出,惡意軟件的格式信息和良性軟件是有很多差異性的,以可執行文件的格式信息作為特征,是識別已知和未知惡意軟件的可行方法。對每個樣本進行格式結構解析,提取**每個樣本實施例件的格式結構信息,可執行文件的格式規范都由操作系統廠商給出,按照操作系統廠商給出的格式規范提取即可。pe文件的格式結構有許多屬性,但大多數屬性無法區分惡意軟件和良性軟件,經過深入分析pe文件的格式結構屬性,提取了可能區分惡意軟件和良性軟件的136個格式結構屬性,如表2所示。表2可能區分惡意軟件和良性軟件的pe格式結構屬性特征描述數量(個)引用dll的總數1引用api的總數1導出表中符號的總數1重定位節的項目總數,連續的幾個字節可能是完成特定功能的一段代碼,或者是可執行文件的結構信息,也可能是某個惡意軟件中特有的字節碼序列。pe文件可表示為字節碼序列,惡意軟件可能存在一些共有的字節碼子序列模式,研究人員直覺上認為一些字節碼子序列在惡意軟件可能以較高頻率出現,且這些字節碼序列和良性軟件字節碼序列存在明顯差異。可執行文件通常是二進制文件,需要把二進制文件轉換為十六進制的文本實施例件,就得到可執行文件的十六進制字節碼序列。自動化測試發現7個邊界條件未處理的異常情況。寧夏軟件系統檢測報告
在數字化轉型加速的,軟件檢測公司已成為保障各行業信息化系統穩定運行的力量。深圳艾策信息科技有限公司作為國內軟件檢測公司領域的企業,始終以技術創新為驅動力,深耕電力能源、科研教育、政企單位、研發科技及醫療機構等垂直場景,為客戶提供從需求分析到運維優化的全鏈條質量保障服務。以專業能力筑牢行業壁壘作為專注于軟件檢測的技術型企業,艾策科技通過AI驅動的智能檢測平臺,實現了測試流程的自動化、化與智能化。其產品——軟件檢測系統,整合漏洞掃描、壓力測試、合規性驗證等20余項功能模塊,可快速定位代碼缺陷、性能瓶頸及安全風險,幫助客戶將軟件故障率降低60%以上。針對電力能源行業,艾策科技開發了電網調度系統專項檢測方案,成功保障某省級電力公司百萬級用戶數據安全;在科研教育領域,其實驗室管理軟件檢測服務覆蓋全國50余所高校,助力科研數據存儲與分析的合規性升級。此外,公司為政企單位政務云平臺、研發科技企業創新產品、醫療機構智慧醫療系統提供的定制化檢測服務,均獲得客戶高度認可。差異化服務塑造行業作為軟件檢測公司,艾策科技突破傳統檢測模式,推出“檢測+培訓+咨詢”一體化服務體系。通過定期發布行業安全白皮書、舉辦技術研討會。軟件app檢測報告艾策科技發布產品:智能企業管理平臺。
且4個隱含層中間間隔設置有dropout層。用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,其***個隱含層的神經元個數是64,第二個神經元的隱含層個數是10,且2個隱含層中間設置有dropout層。且所有dropout層的dropout率等于。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,中間融合模型的準確率變化曲線如圖17所示,模型的對數損失變化曲線如圖18所示。從圖17和圖18可以看出,當epoch值從0增加到20過程中,模型的訓練準確率和驗證準確率快速提高,模型的訓練對數損失和驗證對數損失快速減少;當epoch值從30到50的過程中,中間融合模型的訓練準確率和驗證準確率基本保持不變,訓練對數損失緩慢下降;綜合分析圖17和圖18的準確率和對數損失變化曲線,選取epoch的較優值為30。確定模型的訓練迭代數為30后,進行了10折交叉驗證實驗。中間融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖19所示,規范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經非常接近auc的**優值1。(7)實驗結果比對為了綜合評估本實施例提出融合方案的綜合性能。
步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,基于多模態數據融合方法,將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入深度神經網絡,訓練多模態深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本,并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入步驟s2訓練得到的多模態深度集成模型中,對測試樣本進行檢測并得出檢測結果。進一步的,所述提取軟件樣本的二進制可執行文件的dll和api信息的特征表示,是統計當前軟件樣本的導入節中引用的dll和api;所述提取軟件樣本的二進制可執行文件的pe格式結構信息的特征表示,是先對當前軟件樣本的二進制可執行文件進行格式結構解析,然后按照格式規范提取**該軟件樣本的格式結構信息;所述提取軟件樣本的二進制可執行文件的字節碼n-grams的特征表示,是先將當前軟件樣本件的二進制可執行文件轉換為十六進制字節碼序列,然后采用n-grams方法在十六進制字節碼序列中滑動,產生大量的連續部分重疊的短序列特征。進一步的,采用3-grams方法在十六進制字節碼序列中滑動產生連續部分重疊的短序列特征。進一步的。深圳艾策信息科技:打造智慧供應鏈的關鍵技術。
程序利用windows提供的接口(windowsapi)實現程序的功能。通過一個可執行程序引用的動態鏈接庫(dll)和應用程序接口(api)可以粗略的預測該程序的功能和行為。統計所有樣本的導入節中引用的dll和api的頻率,留下引用頻率**高的60個dll和500個api。提取特征時,每個樣本的導入節里存在選擇出的dll或api,該特征以1表示,不存在則以0表示,提取的560個dll和api特征作為***個特征視圖。提取格式信息特征視圖pe是portableexecutable的縮寫,初衷是希望能開發一個在所有windows平臺上和所有cpu上都可執行的通用文件格式。pe格式文件是封裝windows操作系統加載程序所需的信息和管理可執行代碼的數據結構,數據**是大量的字節碼和數據結構的有機融合。pe文件格式被**為一個線性的數據流,由pe文件頭、節表和節實體組成。惡意軟件或被惡意軟件***的可執行文件,它本身也遵循格式要求的約束,但可能存在以下特定格式異常:(1)代碼從**后一節開始執行;(2)節頭部可疑的屬性;(3)pe可選頭部有效尺寸的值不正確;(4)節之間的“間縫”;(5)可疑的代碼重定向;(6)可疑的代碼節名稱;(7)可疑的頭部***;(8)來自;(9)導入地址表被修改;(10)多個pe頭部;(11)可疑的重定位信息;。數字化轉型中的挑戰與應對:艾策科技的經驗分享。中國軟件安全測評中心
企業數字化轉型指南:艾策科技的實用建議。寧夏軟件系統檢測報告
[1]中文名軟件測試方法外文名SoftwareTestingMethod目的測試軟件性能所屬行業計算機作用選擇合適的軟件目錄1概述2原則3分類?靜態測試和動態測試?黑盒測試、白盒測試和灰盒測試?手動測試和自動化測試4不同階段測試?單元測試?集成測試?系統測試?驗收測試5重要性軟件測試方法概述編輯軟件測試方法的目的包括:發現軟件程序中的錯誤、對軟件是否符合設計要求,以及是否符合合同中所要達到的技術要求,進行有關驗證以及評估軟件的質量。**終實現將高質量的軟件系統交給用戶的目的。而軟件的基本測試方法主要有靜態測試和動態測試、功能測試、性能測試、黑盒測試和白盒測試等等。[2]軟件測試方法眾多,比較常用到的測試方法有等價類劃分、場景法,偶爾會使用到的測試方法有邊界值和判定表,還有包括不經常使用到的正交排列法和測試大綱法。其中等價類劃分、邊界值分析、判定表等屬于黑盒測試方法;只對功能是否可以滿足規定要求進行檢查,主要用于軟件的確認測試階段。白盒測試也叫做結構測試或邏輯驅動測試,是基于覆蓋的全部代碼和路徑、條件的測試,通過測試檢測產品內部性能,檢驗程序中的路徑是否可以按照要求完成工作,但是并不對功能進行測試,主要用于軟件的驗證。寧夏軟件系統檢測報告