本書內(nèi)容充實(shí)、實(shí)用性強(qiáng),可作為高職高專院校計(jì)算機(jī)軟件軟件測試技術(shù)課程的教材,也可作為有關(guān)軟件測試的培訓(xùn)教材,對從事軟件測試實(shí)際工作的相關(guān)技術(shù)人員也具有一定的參考價(jià)值。目錄前言第1章軟件測試基本知識第2章測試計(jì)劃第3章測試設(shè)計(jì)和開發(fā)第4章執(zhí)行測試第5章測試技術(shù)與應(yīng)用第6章軟件測試工具第7章測試文檔實(shí)例附錄IEEE模板參考文獻(xiàn)軟件測試技術(shù)圖書3基本信息書號:軟件測試技術(shù)7-113-07054作者:李慶義定價(jià):出版日期:套系名稱:21世紀(jì)高校計(jì)算機(jī)應(yīng)用技術(shù)系列規(guī)劃教材出版單位:**鐵道出版社內(nèi)容簡介本書主要介紹軟件適用測試技術(shù)。內(nèi)容分為三部分,***部分為概念基礎(chǔ)、測試?yán)碚摰谋尘凹鞍l(fā)展,簡要地分析了當(dāng)前測試技術(shù)的現(xiàn)狀;第二部分介紹軟件測試的程序分析技術(shù)、測試技術(shù),軟件測試的方法和策略,分析了軟件業(yè)在測試方面的研究成果,并總結(jié)了測試的基本原則和一些好的實(shí)踐經(jīng)驗(yàn);第三部分介紹了兩種測試工具軟件——基于Windows的WinRunner和服務(wù)器負(fù)載測試軟件WAS。本書結(jié)合實(shí)際,從一些具體的實(shí)例出發(fā),介紹軟件測試的一些基本概念和方法,分析出軟件測試的基本理論知識,適用性比較強(qiáng)。覆蓋軟件功能與性能的多維度檢測方案設(shè)計(jì)與實(shí)施!cma和國家軟件認(rèn)證
比黑盒適用性廣的優(yōu)勢就凸顯出來了。[5]軟件測試方法手動測試和自動化測試自動化測試,顧名思義就是軟件測試的自動化,即在預(yù)先設(shè)定的條件下運(yùn)行被測程序,并分析運(yùn)行結(jié)果。總的來說,這種測試方法就是將以人驅(qū)動的測試行為轉(zhuǎn)化為機(jī)器執(zhí)行的一種過程。對于手動測試,其在設(shè)計(jì)了測試用例之后,需要測試人員根據(jù)設(shè)計(jì)的測試用例一步一步來執(zhí)行測試得到實(shí)際結(jié)果,并將其與期望結(jié)果進(jìn)行比對。[5]軟件測試方法不同階段測試編輯軟件測試方法單元測試單元測試主要是對該軟件的模塊進(jìn)行測試,通過測試以發(fā)現(xiàn)該模塊的實(shí)際功能出現(xiàn)不符合的情況和編碼錯(cuò)誤。由于該模塊的規(guī)模不大,功能單一,結(jié)構(gòu)較簡單,且測試人員可通過閱讀源程序清楚知道其邏輯結(jié)構(gòu),首先應(yīng)通過靜態(tài)測試方法,比如靜態(tài)分析、代碼審查等,對該模塊的源程序進(jìn)行分析,按照模塊的程序設(shè)計(jì)的控制流程圖,以滿足軟件覆蓋率要求的邏輯測試要求。另外,也可采用黑盒測試方法提出一組基本的測試用例,再用白盒測試方法進(jìn)行驗(yàn)證。若用黑盒測試方法所產(chǎn)生的測試用例滿足不了軟件的覆蓋要求,可采用白盒法增補(bǔ)出新的測試用例,以滿足所需的覆蓋標(biāo)準(zhǔn)。其所需的覆蓋標(biāo)準(zhǔn)應(yīng)視模塊的實(shí)際具體情況而定。成都軟件驗(yàn)收測試定制隱私合規(guī)檢測確認(rèn)用戶數(shù)據(jù)加密符合GDPR標(biāo)準(zhǔn)要求。
2)軟件產(chǎn)品登記測試流程材料準(zhǔn)備并遞交------實(shí)驗(yàn)室受理------環(huán)境準(zhǔn)備------測試實(shí)施------輸出報(bào)告------通知客戶------繳費(fèi)并取報(bào)告服務(wù)區(qū)域北京、上海、廣州、深圳、重慶、杭州、南京、蘇州等**各地軟件測試報(bào)告|軟件檢測報(bào)告以“軟件質(zhì)量為目標(biāo),貫穿整個(gè)軟件生命周期、覆蓋軟件測試生命周期”的**測試服務(wù)模式,真正做到了“軟件測試應(yīng)該越早介入越好的原則”,從軟件生命周期的每一個(gè)環(huán)節(jié)把控軟件產(chǎn)品質(zhì)量;提供軟件產(chǎn)品質(zhì)量度量依據(jù),提供軟件可靠性分析依據(jù)。軟件成果鑒定測試結(jié)果可以作為軟件類科技成果鑒定的依據(jù)。提供功能、性能、標(biāo)準(zhǔn)符合性、易用性、安全性、可靠性等專項(xiàng)測試服務(wù)。科技項(xiàng)目驗(yàn)收測試報(bào)告及鑒定結(jié)論,可以真實(shí)反映指標(biāo)的技術(shù)水平和市場價(jià)值,有助于項(xiàng)目成交和產(chǎn)品營銷。
特征之間存在部分重疊,但特征類型間存在著互補(bǔ),融合這些不同抽象層次的特征可更好的識別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時(shí)偽造多個(gè)抽象層次的特征逃避檢測。基于該觀點(diǎn),本發(fā)明實(shí)施例提出一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,以實(shí)現(xiàn)對惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準(zhǔn)確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示。對當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,得到該軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示。功能完整性測試發(fā)現(xiàn)3項(xiàng)宣傳功能未完全實(shí)現(xiàn)。
這種傳統(tǒng)方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經(jīng)過簡單加殼或混淆后又不能檢測,且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測試,確保主流的反**軟件無法識別這些惡意軟件,使得當(dāng)前的反**軟件通常對它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件。基于數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可實(shí)現(xiàn)惡意軟件的智能檢測,基于這些特征的檢測方法也取得了較高的準(zhǔn)確率。受文本分類方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測方法,這類方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。自動化測試發(fā)現(xiàn)7個(gè)邊界條件未處理的異常情況。大連軟件測評
代碼質(zhì)量評估顯示注釋覆蓋率不足30%需加強(qiáng)。cma和國家軟件認(rèn)證
坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對數(shù)損失和驗(yàn)證對數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,訓(xùn)練對數(shù)損失和驗(yàn)證對數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。cma和國家軟件認(rèn)證