第三方軟件登記測(cè)試報(bào)告

來源: 發(fā)布時(shí)間:2025-04-12

    圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例。基于本發(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。兼容性測(cè)試涵蓋35款設(shè)備,通過率91.4%。第三方軟件登記測(cè)試報(bào)告

第三方軟件登記測(cè)試報(bào)告,測(cè)評(píng)

    每一種信息的來源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺,聽覺,視覺,嗅覺。多模態(tài)機(jī)器學(xué)習(xí)旨在通過機(jī)器學(xué)習(xí)的方法實(shí)現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學(xué)習(xí)從1970年代起步,經(jīng)歷了幾個(gè)發(fā)展階段,在2010年后***步入深度學(xué)習(xí)(deeplearning)階段。在某種意義上,深度學(xué)習(xí)可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復(fù)雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個(gè)**的數(shù)據(jù)集融合成一個(gè)單一的特征向量空間,然后將其用作機(jī)器學(xué)習(xí)算法的輸入,訓(xùn)練機(jī)器學(xué)習(xí)模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無法充分利用多個(gè)模態(tài)數(shù)據(jù)間的互補(bǔ)性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結(jié)合以剔除冗余信息,基于領(lǐng)域經(jīng)驗(yàn)從每個(gè)模態(tài)中提取更高等別的特征表示,或者應(yīng)用深度學(xué)習(xí)算法直接學(xué)習(xí)特征表示,然后在特性級(jí)別上進(jìn)行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓(xùn)練好的分類器輸出決策進(jìn)行融合,如圖2所示。電網(wǎng)軟件安全測(cè)評(píng)機(jī)構(gòu)排名第三方驗(yàn)證實(shí)際啟動(dòng)速度較廠商宣稱慢0.7秒。

第三方軟件登記測(cè)試報(bào)告,測(cè)評(píng)

    [1]中文名軟件測(cè)試方法外文名SoftwareTestingMethod目的測(cè)試軟件性能所屬行業(yè)計(jì)算機(jī)作用選擇合適的軟件目錄1概述2原則3分類?靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試?黑盒測(cè)試、白盒測(cè)試和灰盒測(cè)試?手動(dòng)測(cè)試和自動(dòng)化測(cè)試4不同階段測(cè)試?單元測(cè)試?集成測(cè)試?系統(tǒng)測(cè)試?驗(yàn)收測(cè)試5重要性軟件測(cè)試方法概述編輯軟件測(cè)試方法的目的包括:發(fā)現(xiàn)軟件程序中的錯(cuò)誤、對(duì)軟件是否符合設(shè)計(jì)要求,以及是否符合合同中所要達(dá)到的技術(shù)要求,進(jìn)行有關(guān)驗(yàn)證以及評(píng)估軟件的質(zhì)量。**終實(shí)現(xiàn)將高質(zhì)量的軟件系統(tǒng)交給用戶的目的。而軟件的基本測(cè)試方法主要有靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試、功能測(cè)試、性能測(cè)試、黑盒測(cè)試和白盒測(cè)試等等。[2]軟件測(cè)試方法眾多,比較常用到的測(cè)試方法有等價(jià)類劃分、場(chǎng)景法,偶爾會(huì)使用到的測(cè)試方法有邊界值和判定表,還有包括不經(jīng)常使用到的正交排列法和測(cè)試大綱法。其中等價(jià)類劃分、邊界值分析、判定表等屬于黑盒測(cè)試方法;只對(duì)功能是否可以滿足規(guī)定要求進(jìn)行檢查,主要用于軟件的確認(rèn)測(cè)試階段。白盒測(cè)試也叫做結(jié)構(gòu)測(cè)試或邏輯驅(qū)動(dòng)測(cè)試,是基于覆蓋的全部代碼和路徑、條件的測(cè)試,通過測(cè)試檢測(cè)產(chǎn)品內(nèi)部性能,檢驗(yàn)程序中的路徑是否可以按照要求完成工作,但是并不對(duì)功能進(jìn)行測(cè)試,主要用于軟件的驗(yàn)證。

    **小化對(duì)數(shù)損失基本等價(jià)于**大化分類器的準(zhǔn)確度,對(duì)于完美的分類器,對(duì)數(shù)損失值為0。對(duì)數(shù)損失函數(shù)的計(jì)算公式如下:其中,y為輸出變量即輸出的測(cè)試樣本的檢測(cè)結(jié)果,x為輸入變量即測(cè)試樣本,l為損失函數(shù),n為測(cè)試樣本(待檢測(cè)軟件的二進(jìn)制可執(zhí)行文件)數(shù)目,yij是一個(gè)二值指標(biāo),表示與輸入的第i個(gè)測(cè)試樣本對(duì)應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個(gè)測(cè)試樣本屬于類別j的概率,m為總類別數(shù),本實(shí)施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評(píng)價(jià),roc曲線的縱軸是檢測(cè)率(true****itiverate),橫軸是誤報(bào)率(false****itiverate),該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評(píng)價(jià)分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動(dòng)態(tài)鏈接庫文件,執(zhí)行某一個(gè)程序時(shí),相應(yīng)的dll文件就會(huì)被調(diào)用。一個(gè)應(yīng)用程序可使用多個(gè)dll文件,一個(gè)dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開發(fā)的接口。策科技助力教育行業(yè):數(shù)字化教學(xué)的創(chuàng)新應(yīng)用 。

第三方軟件登記測(cè)試報(bào)告,測(cè)評(píng)

    嘗試了前端融合、后端融合和中間融合三種融合方法對(duì)進(jìn)行有效融合,有效提高了惡意軟件的準(zhǔn)確率,具備較好的泛化性能和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測(cè)方法的檢測(cè)能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為。有效解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法檢測(cè)結(jié)果準(zhǔn)確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時(shí)偽造良性軟件的多個(gè)抽象層次的特征以逃避檢測(cè),本發(fā)明實(shí)施例同時(shí)融合軟件的二進(jìn)制可執(zhí)行文件的多個(gè)抽象層次的特征,可準(zhǔn)確檢測(cè)出偽造良性軟件特征的惡意軟件,解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法難以檢測(cè)出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發(fā)明實(shí)施例或現(xiàn)有技術(shù)中的技術(shù)方案,下面將對(duì)實(shí)施例或現(xiàn)有技術(shù)描述中所需要使用的附圖作簡(jiǎn)單地介紹,顯而易見地,下面描述中的附圖**是本發(fā)明的一些實(shí)施例,對(duì)于本領(lǐng)域普通技術(shù)人員來講,在不付出創(chuàng)造性勞動(dòng)的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。對(duì)比分析顯示資源占用率高于同類產(chǎn)品均值26%。軟件產(chǎn)品測(cè)試報(bào)告申請(qǐng)

壓力測(cè)試表明系統(tǒng)在5000并發(fā)用戶時(shí)響應(yīng)延遲激增300%。第三方軟件登記測(cè)試報(bào)告

    本發(fā)明屬于惡意軟件防護(hù)技術(shù)領(lǐng)域::,涉及一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法。背景技術(shù):::惡意軟件是指在未明確提示用戶或未經(jīng)用戶許可的情況下,故意編制或設(shè)置的,對(duì)網(wǎng)絡(luò)或系統(tǒng)會(huì)產(chǎn)生威脅或潛在威脅的計(jì)算機(jī)軟件。常見的惡意軟件有計(jì)算機(jī)**(簡(jiǎn)稱**)、特洛伊木馬(簡(jiǎn)稱木馬)、計(jì)算機(jī)蠕蟲(簡(jiǎn)稱蠕蟲)、后門、邏輯**等。惡意軟件可能在用戶不知情的情況下竊取計(jì)算機(jī)用戶的信息和隱私,也可能非法獲得計(jì)算機(jī)系統(tǒng)和網(wǎng)絡(luò)資源的控制,破壞計(jì)算機(jī)和網(wǎng)絡(luò)的可信性、完整性和可用性,從而為惡意軟件控制者謀取非法利益。騰訊安全發(fā)布的《2017年度互聯(lián)網(wǎng)安全報(bào)告》顯示,2017年騰訊電腦管家pc端總計(jì)攔截**近30億次,平均每月攔截木馬**近,共發(fā)現(xiàn)**或木馬***。這些數(shù)目龐大、名目繁多的惡意軟件侵蝕著我國的***、經(jīng)濟(jì)、文化、***等各個(gè)領(lǐng)域的信息安全,帶來了前所未有的挑戰(zhàn)。當(dāng)前的反**軟件主要采用基于特征碼的檢測(cè)方法,這種方法通過對(duì)代碼進(jìn)行充分研究,獲得惡意軟件特征值(即每種惡意軟件所獨(dú)有的十六進(jìn)制代碼串),如字節(jié)序列、特定的字符串等,通過匹配查找軟件中是否包含惡意軟件特征庫中的特征碼來判斷其是否為惡意軟件。第三方軟件登記測(cè)試報(bào)告

標(biāo)簽: 測(cè)評(píng)
99国产精品一区二区,欧美日韩精品区一区二区,中文字幕v亚洲日本在线电影,欧美日韩国产三级片
午夜福利国产精品久久婷婷 | 性爱国产精品福利在线 | 中文字幕一区二区在线观看 | 在国产线视频a在线视频 | 在线观看国产一区 | 日本三级欧美三级人妇视频黑白配 |