此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發明實施例的目的在于提供一種基于多模態深度學習的惡意軟件檢測方法,以解決現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測準確率不高、檢測可靠性低、泛化性和魯棒性不佳的問題,以及其難以檢測出偽造良性軟件特征的惡意軟件的問題。本發明實施例所采用的技術方案是,基于多模態深度學習的惡意軟件檢測方法,按照以下步驟進行:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖。滲透測試報告暴露2個高危API接口需緊急加固。成都軟件第三方測試機構
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區分惡意軟件和良性軟件的短序列特征,是因為字節碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態數據融合方法。軟件功能性測評費用艾策科技案例研究:某跨國企業的數字化轉型實踐。
在不知道多長的子序列能更好的表示可執行文件的情況下,只能以固定窗口大小在字節碼序列中滑動,產生大量的短序列,由機器學習方法選擇可能區分惡意軟件和良性軟件的短序列作為特征,產生短序列的方法叫n-grams。“080074ff13b2”的字節碼序列,如果以3-grams產生連續部分重疊的短序列,將得到“080074”、“0074ff”、“74ff13”、“ff13b2”四個短序列。每個短序列特征的權重表示有多種方法。**簡單的方法是如果該短序列在具體樣本中出現,就表示為1;如果沒有出現,就表示為0,也可以用。本實施例采用3-grams方法提取特征,3-grams產生的短序列非常龐大,將產生224=(16,777,216)個特征,如此龐大的特征集在計算機內存中存儲和算法效率上都是問題。如果短序列特征的tf較小,對機器學習可能沒有意義,選取了tf**高的5000個短序列特征,計算每個短序列特征的,每個短序列特征的權重是判斷其所在軟件樣本是否為惡意軟件的依據,也是區分每個軟件樣本的依據。(4)前端融合前端融合的架構如圖4所示,前端融合方式將三種模態的特征合并,然后輸入深度神經網絡,隱藏層的***函數為relu,輸出層的***函數是sigmoid,中間使用dropout層進行正則化,防止過擬合,優化器。
圖書目錄第1章軟件測試描述第2章常見的軟件測試方法第3章設計測試第4章程序分析技術第5章測試分析技術第6章測試自動化的優越性第7章測試計劃與測試標準第8章介紹一種企業級測試工具第9章學習一種負載測試軟件第10章軟件測試的經驗總結附錄A常見測試術語附錄B測試技術分類附錄C常見的編碼錯誤附錄D有關的測試網站參考文獻軟件測試技術圖書4書名:軟件測試技術第2版作者:徐芳層次:高職高專配套:電子課件出版社:機械工業出版社出版時間:2012-06-26ISBN:978-7-111-37884-6開本:16開定價:目錄第1章開始軟件測試工作第2章執行系統測試第3章測試用例設計第4章測試工具應用第5章測試技術與應用第6章成為***的測試組長第7章測試文檔實例詞條圖冊更多圖冊。多平臺兼容性測試顯示Linux環境下存在驅動適配問題。
收藏查看我的收藏0有用+1已投票0軟件測試技術編輯鎖定討論上傳視頻軟件測試技術是軟件開發過程中的一個重要組成部分,是貫穿整個軟件開發生命周期、對軟件產品(包括階段性產品)進行驗證和確認的活動過程,其目的是盡快盡早地發現在軟件產品中所存在的各種問題——與用戶需求、預先定義的不一致性。檢查軟件產品的bug。寫成測試報告,交于開發人員修改。軟件測試人員的基本目標是發現軟件中的錯誤。中文名軟件測試技術簡介單元測試、集成測試主要步驟測試設計與開發常見測試回歸測試功能測試目錄1主要步驟2基本功能3測試目標4測試目的5常見測試6測試分類7測試工具8同名圖書?圖書1?圖書2?圖書3?圖書4軟件測試技術主要步驟編輯1、測試計劃2、測試設計與開發3、執行測試軟件測試技術基本功能編輯1、驗證(Verification)2、確認(Validation)軟件測試人員應具備的知識:1、軟件測試技術2、被測試應用程序及相關應用領域軟件測試技術測試目標編輯1、軟件測試人員所追求的是盡可能早地找出軟件的錯誤;2、軟件測試人員必須確保找出的軟件錯誤得以關閉。負載測試證實系統最大承載量較宣傳數據低18%。伊春軟件產品登記測試報告費用
隱私合規檢測確認用戶數據加密符合GDPR標準要求。成都軟件第三方測試機構
先將當前軟件樣本件的二進制可執行文件轉換為十六進制字節碼序列,然后采用n-grams方法在十六進制字節碼序列中滑動,產生大量的連續部分重疊的短序列特征,提取得到當前軟件樣本的二進制可執行文件的字節碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統計所有類別已知的軟件樣本的pe可執行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當前軟件樣本的所有dll和api信息進行表示形成當前軟件樣本的dll和api信息特征視圖。生成軟件樣本的格式信息特征視圖,是從當前軟件樣本的pe格式結構信息中選取可能區分惡意軟件和良性軟件的pe格式結構特征,形成當前軟件樣本的格式信息特征視圖。從當前軟件樣本的pe格式結構信息中選取可能區分惡意軟件和良性軟件的pe格式結構特征,是從當前軟件樣本的pe格式結構信息中確定存在特定格式異常的pe格式結構特征以及存在明顯的統計差異的格式結構特征。特定格式異常包括:(1)代碼從**后一節開始執行,(2)節頭部可疑的屬性,。成都軟件第三方測試機構