TDLAS能實現"原位、連續、實時測量",環境適應力強,易于設備的小型化。因此可以掙脫實驗室的束縛,在產業應用中大展拳腳。比如大氣環境在線監測、發動機效率檢測、汽車尾氣測量、工業過程氣體實時監測等等。TDLAS利用半導體激光器的波長調諧特性,可獲得被選定的待測氣體特征吸收峰的吸收光譜,從而對氣體定性或者定量的分析。每種氣體分子的吸收峰受其他氣體吸收干擾很小,所以也稱之為"分子的指紋峰"TDLAS技術簡單來說就是這些氣體"分子指紋"的識別系統,具有很強的選擇性。此外,TDLAS的檢測靈敏度也是較高的,不過檢出限能達到怎樣的量級,就和所用光源有著很大的關系。常見的污染氣體的"指紋峰"主要集中在4μm-10μm,基本是中紅外的天下,所以,作為中紅外激光光源的QCL,則可展現性能優勢。再加之高輸出功率,檢出限可達到ppb,甚至ppt級別。這比傳統的近紅外光源所能達到的水平,整整高出了3~6個量級。 中紅外光譜是分子的基頻吸收區,對痕量氣體具有極高的敏感度,這使得它成為溫室氣體監測的理想選擇。北京制造QCL激光器價格
相比較與其它激光器,量子級聯激光器的優點如下:1)中遠紅外和太赫茲波段出射;在QCL發明之前,半導體激光器的發射波長主要在可見光和近紅外波段,當我們需要使用中遠紅外和太赫茲波段的激光時,半導體激光器對此則有些無能為力,不同體系激光器激射波長范圍如圖3。QCL的發明,使得半導體激光器也能激射出中遠紅外和太赫茲波段的激光。如圖3.不同激光器發光范圍[15]2)寬波長范圍;QCL激射波長取決于子帶間能量差,可以通過設計量子阱層厚度來實現波長控制,所以量子級聯激光器的激射波長范圍極寬(約3-250μm),并且可以根據實際需求設計特定波長的激光輸出。3)體積小;QCL相比其它激光器如:一氧化碳激光器(激射波長為4-5μm)和二氧化碳激光器(激射波長為μm),具有體積小、重量輕的特點,其攜帶方便,便于系統化和集成化。4)單極型結構;傳統結構半導體激光器為雙極型,其出光原理依靠的是p-n結中導帶電子和價帶空穴復合所產生的受激輻射,而QCL全程只有電子參與,空穴并未參與輻射發光過程,所以量子級聯激光器為單極型激光器,且其出射的激光具有很好的單向偏振性。5)高的電子利用效率;因為QCL所獨特的級聯結構,電子在參與完子帶間躍遷發光后,并沒有湮滅。 上海CH4QCL激光器封裝0.76~25μm 為近紅外,25~30μm 為中紅外,30~1000 μm為遠紅外。
QCL(量子級聯激光器)激光驅動器是專門設計用于激勵量子級聯激光器的電子設備。QCL是一種基于半導體材料的激光器,具有較高的效率和可調的波長,廣泛應用于光譜學、激光雷達和通信等領域。QCL激光驅動器的主要功能包括:1.電流控制:提供穩定的電流源,以確保QCL在比較好工作狀態下運行。2.調制功能:能夠對激光輸出進行調制,以實現不同的應用需求,如脈沖激光輸出。3.溫度控制:通常集成溫控系統,以保持激光器在穩定的溫度環境中工作,確保性能穩定。4.保護功能:具備過流、過溫等保護機制,以防止激光器因異常條件而損壞。選擇合適的QCL激光驅動器時,需要考慮激光器的工作參數、所需的調制頻率和穩定性等因素。
傳統的半導體激光器,工作原理都是依靠半導體材料中導帶的電子和價帶中的空穴復合而激發光子,其激射波長由半導體材料的禁帶寬度所決定,由于受禁帶寬度的限制,使得半導體激光器難以發出中遠紅外以及太赫茲波段的激光。自然界不多的對應能出射中遠紅外的半導體材料-鉛鹽系材料,其只能在低溫下工作(低于77K),且輸出功率極低,為微瓦級別。為了使半導體激光器也能激射中遠紅外以及太赫茲波段的光,科研人員跳出了基于半導體材料p-n結發光的理論,提出了量子級聯激光器的構想。量子級聯激光器的工作原理為電子在半導體材料導帶的子帶間躍遷和聲子共振輔助隧穿從而產生光放大,其出射波長由導帶的子帶間的能量差所決定,和半導體材料的禁帶寬度無關,因此可以通過設計量子阱層的厚度來實現波長的控制。如圖1.(A)傳統半導體激光器其發光原理(B)QCL發光原理。 TDLAS能實現"原位、連續、實時測量",環境適應力強,易于設備的小型化。
量子級聯激光器(QuantumCascadeLaser,QCL)作為一種新興的激光技術,正在多個領域中展現出其獨特的優勢和廣泛的應用潛力。其的優點使得產品在市場上備受青睞,尤其是在環境監測、醫療成像和工業檢測等方面。首先,量子級聯激光器具有出色的波長可調性,能夠在中紅外范圍內實現高效發射。這一特性使得量子級聯激光器在氣體傳感領域的應用尤為突出。通過精確的波長調節,用戶可以針對特定氣體進行高靈敏度的檢測,從而有效解決了傳統傳感器難以檢測低濃度有害氣體的問題。這不僅提高了環境監測的精度,也為企業的安全生產提供了有力保障。其次,量子級聯激光器在醫療成像領域也展現出了巨大的優勢。其高功率和高效率的特性,能夠提升成像系統的分辨率和信噪比,使得醫生能夠更清晰地觀察到組織和的狀態。這對于早期疾病的診斷和方案的制定具有重要意義,從而提高了患者的效率,降低了醫療成本。 在大氣污染監控中,QCL能夠準確檢測大氣中的微量成分,為環境保護提供有力支持。上海國產QCL激光器定制
QCL由二次諧波從而對污染氣體進行定性或者定量分析,具有高分辨率、高靈敏度以及響應時間快等特點。北京制造QCL激光器價格
激光器的發展里程碑如下:1960年發明的固態激光器和氣體激光器,1962年發明的雙極型半導體激光器和1994年發明的單極型量子級聯激光器(QCL)是激光領域的三個重大變革性里程碑。量子級聯激光器的工作原理與通常的半導體激光器截然不同,它打破了傳統p-n結型半導體激光器的電子-空穴復合受激輻射機制,其發光波長由半導體能隙來決定,填補了半導體中紅外激光器的空白。QCL受激輻射過程只有電子參與,其激射方案是利用在半導體異質結薄層內由量子限制效應引起的分離電子態之間產生粒子數反轉,從而實現單電子注入的多光子輸出,并且可以輕松得通過改變量子阱層的厚度來改變發光波長。量子級聯激光器比其它激光器的優勢在于它的級聯過程,電子從高能級跳躍到低能級過程中,不但沒有損失,還可以注入到下一個過程再次發光。這個級聯過程使這些電子"循環"起來,從而造就了一種令人驚嘆的激光器。因此,量子級聯激光器的發明被視為半導體激光理論的一次變革和里程碑。 北京制造QCL激光器價格