當紅外輻射的能量與氣體分子振動躍遷所需的能量相匹配時,氣體分子會吸收特定波長的紅外光,導致透過光的強度減弱,從而形成特征吸收峰。輻射光子的能量與分子振動躍遷的能量差相等。l分子振動伴隨偶極矩的變化(紅外活性)。分子在紅外光譜中表現出基頻、倍頻和組合頻吸收峰。l每種氣體分子具有獨特的紅外吸收譜帶,這種特征吸收峰可以用來識別氣體種類。絕大多數氣態化學物質在中紅外光譜區(≈2-25m)都顯示出基本的振動吸收帶,這些基本帶對光的吸收提供了一種幾乎通用的檢測手段。光學技術的主要特征是對痕量氣體的非侵入式原位檢測能力。目前中紅外激光在定量痕量氣體檢測中的應用必將代替近紅外成為下一代高精度的選擇。進入21世紀全球環境問題日益突出,各國都在在努力減少溫室氣體排放。二氧化碳(CO2)通常被稱為溫室氣體,但其他使全球環境惡化的氣體還包括二氧化硫(SO2)和二氧化氮(NO2)。此外,在氣體泄漏檢測和性氣體的集中監控是預防災難中激光法可以采取有效報警措施從而可以避免風險于災難之前。激光吸收光譜法是檢測微量氣體的方法之一。它使用分布式反饋激光二極管(DFB-LD)檢測某種氣體,該二極管具有特定于該氣體的光吸收波長。 針對部分疾病,目前已有許多基于 TDLAS 技術的無創檢測方法,且效果明顯。河北氧化亞氮QCL激光器多少錢
氣體分析儀主要利用激光光譜技術,通過氣體對特定波長的激光吸收特性來檢測氣體濃度。1.激光吸收光譜原理激光吸收光譜法基于不同氣體分子對特定波長的激光具有不同的吸收特性。當激光光束穿過氣體樣品時,特定氣體分子會吸收與其吸收光譜相匹配的激光波長。通過測量吸收后的激光強度變化,可以確定氣體的濃度。2.調諧二極管激光吸收光譜(TDLAS)調諧二極管激光吸收光譜(TDLAS)是激光氣體分析儀**常用的技術之一。其工作原理如下:激光光源:使用調諧半導體激光器作為光源,能夠在特定的窄波段范圍內快速調諧激光波長,精確匹配待測氣體的吸收峰。氣體吸收過程:激光器發射的窄帶單色激光穿過待測氣體樣品。由于特定氣體分子在特定波長處具有吸收峰,部分激光能量被吸收,導致光強度減弱。探測器測量:激光通過氣體后,剩余的激光光強被探測器接收。探測器將光信號轉換為電信號,測量激光強度的衰減。信號處理與濃度計算:分析儀通過計算吸收光譜的強度和形狀,使用朗伯-比爾定律(Beer-LambertLaw)來推導出氣體的濃度。TDLAS技術的高分辨率和高靈敏度使其能夠準確檢測低濃度的氣體。3.光聲光譜(PAS)光聲光譜(PhotoacousticSpectroscopy。 半導體QCL激光器定制光譜技術在氣體檢測領域有著廣泛的應用,其中OF-CEAS、CRDS和TDLAS是三種主要技術。
在當今高科技迅猛發展的時代,量子級聯激光器(QCL激光器)憑借其性能,越來越受到氣體檢測領域的關注。作為一種高靈敏度的激光器,QCL激光器能夠在極低濃度的氣體環境下進行準確檢測,為環境監測和工業應用提供可靠的數據支持。這一特性使得QCL激光器成為氣體分析的工具,尤其在安全監測和環境保護等領域,其應用價值不可小覷。QCL激光器的另一個優勢在于其強大的選擇性。與其他類型的激光器相比,QCL激光器能夠有效地區分不同氣體分子的吸收特性。這意味著在復雜的氣體混合環境中,QCL激光器能夠精確識別特定氣體的存在,從而減少誤報的可能性,極大地提高了檢測的可靠性和準確性。這種選擇性不僅提升了產品的市場競爭力,同時也為客戶帶來了更高的滿意度。
波長覆蓋范圍寬量子級聯激光器從波長設計原理上與常規半導體激光器不同,常規半導體激光器的激射波長受限于材料自身的禁帶寬度,而QCL的激射波長是由導帶中子帶間的能級間距決定的,可以通過調節量子阱/壘層的厚度改變子帶間的能級間距,從而改變QCL的激射波長。從理論上講,QCL可以覆蓋中遠紅外到THz波段。[2]單個激光器激射波長連續可調諧對于各種氣體的檢測,需要激光器的波長精確平滑地從一個波長調諧到另一個波長。對于特定氣體的檢測,波長更需要精確的調節以匹配其吸收線,也稱為分子“指紋”。另外,通過波長調節以匹配氣體的第二條吸收線,可以用來作為條吸收線是否正確的判斷標準。單個激光器的激射波長可以通過改變溫度和工作電流進行調諧,已有技術通過改變激光器的工作溫度,得到波長9μm激光器中心頻率,約為10cm-1。而使用外置光柵,可以得到更寬的波長調諧范圍。 在工業污染分析中,QCL的快速響應和高靈敏度使其能夠實時監測煙塵顆粒的組成和濃度。
大氣中CO2、CH4、N2O三大溫室氣體的特征吸收光譜主要位于近紅外和中紅外光波段,其中近紅外波段波長在-μm范圍,對應于氣體分子的“泛頻”吸收譜帶,而中紅外波段波長位于-25μm范圍,對應于氣體分子的“基頻”吸收譜帶,吸收強度要明顯高于近紅外波段,適用于濃度痕量氣體分子的高靈敏檢測。針對目前溫室氣體多目標場景監測需求,研究人員開展了不同形式的探測方法研究,主要包括地面探測、地基探測、機載探測和星載探測,綜合運用各種吸收光譜技術和儀器,通過掃描獲取溫室氣體紅外波段的特征吸收光譜,經過光電信號轉換、光譜信號采集、濃度算法解析、軟件數據處理等技術過程,能夠實現溫室氣體多組分高靈敏時空分辨觀測。 QCL由二次諧波從而對污染氣體進行定性或者定量分析,具有高分辨率、高靈敏度以及響應時間快等特點。河北氧化亞氮QCL激光器多少錢
中紅外光譜是分子的基頻吸收區,對痕量氣體具有極高的敏感度,這使得它成為溫室氣體監測的理想選擇。河北氧化亞氮QCL激光器多少錢
QCL激光器的基本結構包括FP-QCL(上圖)、DFB-QCL(中圖)和ECqcL(下圖)。增益介質顯示為灰色,波長選擇機制為藍色,鍍膜面為橙色,輸出光束為紅色。1.**簡單的結構是F-P腔激光器(FP-QCL)。在F-P結構中,切割面為激光提供反饋,有時也使用介質膜以優化輸出。2.第二種結構是在QC芯片上直接刻分布反饋光柵。這種結構(DFB-QCL)可以輸出較窄的光譜,但是輸出功率卻比FP-QCL結構低很多。通過**大范圍的溫度調諧,DFB-QCL還可以提供有限的波長調諧(通過緩慢的溫度調諧獲得10~20cm-1的調諧范圍,或者通過快速注進電流加熱調諧獲得2~3cm-1的范圍)。3.第三種結構是將QC芯片和外腔結合起來,形成ECqcL。這種結構既可以提供窄光譜輸出,又可以在QC芯片整個增益帶寬上(數百cm-1)提供快調諧(速度超過10ms)。由于ECqcL結構使用低損耗元件,因此它可在便攜式電池供電的條件下高效運作。 河北氧化亞氮QCL激光器多少錢
寧波寧儀信息技術有限公司在同行業領域中,一直處在一個不斷銳意進取,不斷制造創新的市場高度,多年以來致力于發展富有創新價值理念的產品標準,在浙江省等地區的電子元器件中始終保持良好的商業口碑,成績讓我們喜悅,但不會讓我們止步,殘酷的市場磨煉了我們堅強不屈的意志,和諧溫馨的工作環境,富有營養的公司土壤滋養著我們不斷開拓創新,勇于進取的無限潛力,寧波寧儀信息技術供應攜手大家一起走向共同輝煌的未來,回首過去,我們不會因為取得了一點點成績而沾沾自喜,相反的是面對競爭越來越激烈的市場氛圍,我們更要明確自己的不足,做好迎接新挑戰的準備,要不畏困難,激流勇進,以一個更嶄新的精神面貌迎接大家,共同走向輝煌回來!